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The field of generative antibody design has reached an inflection point with five major
platforms demonstrating zero-shot capabilities: JAM-2 (Nabla Bio), Chai-2 (Chai Discov-
ery), Origin-1 (AbSci), RFAntibody (Baker Lab), and Latent-X2 (Latent Labs). Yet these
advances mask a critical gap—the therapeutic gap between computational binding suc-
cess and clinical viability. Current benchmarks optimize for affinity while neglecting de-
velopability, immunogenicity, and manufacturability—properties that determine whether
a molecule survives the attrition funnel of drug discovery.

We present DADB-v1.0, a standardized evaluation framework treating antibody design
as a therapeutic decathlon across binding (40%), structure (25%), developability (20%),
and immunogenicity (15%). Our key innovation is the Gatekeeper Architecture: de-
signs must pass binary thresholds for thermostability, aggregation, solubility, and im-
munogenicity to receive non-zero scores. A design with picomolar affinity that aggre-
gates at 37°C receives a near-zero score—penalizing “pyrrhic victories” where binding
is achieved at the cost of drug-likeness.

Our analysis reveals: (1) Latent-X2 achieves the highest reported affinity (26.2 pM) and
is the only platform with published human immunogenicity data—10-donor panels
showing no T-cell proliferation or cytokine elevation; (2) JAM-2 delivers the highest con-
sistent hit rates (39% VHH-Fc); (3) Chai-2 provides the most extensive cryo-EM valida-
tion (5 structures, 0.41—1.7 A RMSD); (4) Origin-1 uniquely targets zero-prior epitopes;
(5) RFAntibody remains the only fully open-source option.

Keywords: de novo antibody design, benchmark, immunogenicity, developability, foundation
models, Latent-X2, therapeutic antibodies
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1 The Therapeutic Gap: Why Current Benchmarks Fall Short

The emergence of generative Al for protein design has transformed antibody discovery. Five
platforms now demonstrate zero-shot capabilities:

1. JAM-2 (Nabla Bio): 39% hit rates with comprehensive developability assessment

2. Chai-2 (Chai Discovery): Cryo-EM validated atomic accuracy against challenging targets
3. Origin-1 (AbSci): Zero-prior epitope targeting without reference antibodies

4. RFAntibody (Baker Lab): Open-source with Nature publication and 4 cryo-EM structures
5. Latent-X2 (Latent Labs): Firstimmunogenicity data, highest affinity (26.2 pM), multi-modality

Yet the gap between computational success and clinical viability remains wide. Current
benchmarks, by optimizing for binding affinity alone, inadvertently incentivize models to exploit
shortcuts that produce unstable, non-manufacturable, or immunogenic designs.

Stage 1: Binding (Kp < 100 nM) 100% Computational designs

Stage 2: Developability (4 Gates) ~40% survive gates

Stage 3: Safety (Immunogenicily)

~15% pass safety

T-cell epitopes @ Humanness e Polyreactivity

Stage 4: Clinical Candidate ~5% clinical potential

Figure 1: The Drug Development Funnel: Where Most Computational Designs Fail. Cur-
rent benchmarks measure only the top stage (Binding), while developability and safety gates
eliminate 85% of candidates. DADB-v1.0 penalizes designs that fail downstream gates, forc-
ing models to optimize for clinical viability, not just affinity. Source: Industry attrition data from
Nature Reviews Drug Discovery.

LCAELCEE

The “Affinity Trap”: A model that generates a 1 pM binder that aggregates at 37°C or
triggers anti-drug antibodies is functionally useless for therapeutics. Current benchmarks
reward this “pyrrhic victory”—DADB-v1.0 penalizes it through the Gatekeeper Architec-
ture.
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Table 1: Comparison of Protein/Antibody Benchmarks. Existing benchmarks excel in spe-
cific domains but none provide the holistic evaluation needed for therapeutic antibody design.

DADB-v1.0 synthesizes the best aspects of each while filling critical gaps.

Benchmark Primary Focus

Key Strength

Key Limitation

DADB Adaptation

CASP Structure prediction Blind assessment; Single chains; lim- Adopt blind model;
independent evalu- ited antibody com- expand to com-
ators plexes plexes

CAPRI Protein-protein I|_rms/L_rms met- Docking, not de- Adopt structural

docking rics; quality tiers sign; no developa- metrics; add design
bility layer

CAMEO Continuous evalua- Weekly targets; au- Limited antibody fo- Adopt continuous

tion tomated cus evaluation model

AbRank Affinity prediction 380K assays; rank-  Affinity-only; no Incorporate rank-
ing framework structural validation  ing; add structure

AbBiBench  Affinity maturation Complex-as-unit Limited developa- Expand to full de-
evaluation bility velopability panel

DADB-v1.0 Therapeutic de- Holistic; gate- New; unproven —

sign keepers

100

80 +
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Q 60 [
o
o

e 40|
o
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CASP CAPRI AbRank AbBiBench DADB-v1.0
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Figure 2: Existing Benchmarks Measure Only a Subset of Therapeutic Requirements.
CASP focuses on structure prediction; CAPRI on docking; AbRank on affinity; AbBiBench
adds inverse folding. Only DADB-v1.0 provides comprehensive coverage across all four pillars
of therapeutic viability. Analysis based on benchmark documentation and published scopes.
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2 Five Platform Comparison: Fact-Checked Deep Dives

Table 2: Platform Comparison: Comprehensive Fact-Checked Metrics. All values verified
against primary publications. Chai-2 reports 4-87% range across targets; Origin-1: 104 nM
after affinity maturation. Latent-X2 includes first-ever immunogenicity data for Al-generated
antibodies.

Metric JAM-2 Chai-2 Origin-1 RFAntibody Latent-X2
Performance
VHH Hit Rate 39% 4-87% Not tested  Not reported 50% (9/18)
mAb/IgG Hit Rate 18% Not reported  4/10 targets Not tested Not reported
Best Monomeric Affinity  Not reported 453 pM 104 nM 78 nM 26.2 pM
Best Avidity-Enhanced <100 pM®  Not reported Notreported Not reported Not reported
Designs per Target 45-100 100-400 100+ 9,000+ 4-24
Validation
Cryo-EM Structures No 5 complexes 2 complexes 4 complexes No
Best RMSD — 0.41 A 1.79 A 09A —
Developability Data Extensive Extensive Limited Limited Extensive
Human Immunogenicity No No No No Yes (10 donors)
Access
License Proprietary Proprietary Proprietary ~ MIT (Open) Proprietary
Weights Available No No No Yes No
Multi-modality No No No No Yes

*TrkA in avid format (Fc-fusion); true monomeric Kp not reported

2.1 JAM-2 (Nabla Bio): Highest Consistent Hit Rates

Source: “JAM-2: Fully computational design of drug-like antibodies with high success rates”
(Nabla Bio, 2025)
Verified Claims:

* Hit rates: 39% VHH-Fc (N=6 targets), 18% mAb (N=7 targets)

+ Best affinity: <100 pM (TrkA, avid format/Fc-fusion); note: true monomeric Kp not re-
ported

GPCR success: 11.7% (CXCR4), 3.8% (CXCR?7)

» Developability: 57% pass all 4 criteria (thermostability, monomericity, hydrophobicity, polyre-
activity)

» Designs per target: 45-100

Timeline: 2-3 days computational; <4 weeks wet-lab

Architecture: Not disclosed. Commercial platform available through partnership.
Limitations: No pMHC targeting demonstrated; no cryo-EM structural validation; avidity-
enhanced formats may obscure true monomeric affinity.

2.2 Chai-2 (Chai Discovery): Most Extensive Cryo-EM Validation

Source: “Drug-like antibody design against challenging targets with atomic precision” (bioRxiv,
2025)
Verified Claims:
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Hit rate range: 4-87% across targets (median 24% for GPCRs)

GPCR success: 48% (GPRC5D), 50% (CCR8), 11% (CXCR4)

PMHC success: 4% (KRAS G12V), successful for TP53 R175H

Best affinity: 453 pM (CCR8, monomeric)

Structural accuracy: <1.0 A HCDR3 RMSD; 0.41—1.7 A cryo-EM global RMSD
» Cryo-EM structures: 5 complexes (S1433B, CSF1, EFNAS5, I1L20, EPCR)

* Developability: 100% thermostability pass rate

Limitations: Architecture undisclosed; not publicly available; variable hit rates across tar-
get classes.

2.3 Origin-1 (AbSci): Zero-Prior Epitope Specialist

Source: “Origin-1: a generative Al platform for de novo antibody design against novel epi-
topes” (bioRxiv, 2026)
Verified Claims:

Success rate: 4/10 targets for zero-prior epitopes

Best affinity: 104 nM (IL36RN after affinity maturation)

« Cryo-EM structures: 2 complexes (COL6A3: 3.0 A, AZGP1: 3.1 A)
Global RMSD: 1.79-2.56 A

Interface RMSD: 0.96-1.35 A

» Zero-prior capability: Successfully designed binders to epitopes with no prior antibody-
antigen complexes

Limitations: Lower hit rates than competitors; requires affinity maturation (initial designs
1M range); not publicly available.

2.4 RFAntibody (Baker Lab): The Open-Source Foundation

Source: “Atomically accurate de novo design of antibodies with RFdiffusion” (Nature, 2025)
Verified Claims:

» Open source: MIT license (only fully open platform)

* Cryo-EM structures: 4 complexes (Influenza HA, TcdB-scFv6, TcdB-VHH, SARS-CoV-2
RBD)

Best affinity: 78 nM (VHH against influenza HA, monomeric)

PHOX2B affinity: 400 nM (scFv)

* Designs required: 9,000+ VHHs screened for influenza HA

Structural accuracy: 0.9-1.45 A cryo-EM RMSD

Critical Corrections: The Nature paper does not report aggregate hit rates or IgG testing.
Removed claims of 1.5% VHH and 0% IgG hit rates as these are not in the source material.

Limitations: Requires massive sampling (10,000+ designs); computationally expensive;
design failures occur (SARS-CoV-2 example: correct epitope, wrong binding mode).
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2.5 Latent-X2 (Latent Labs): Immunogenicity Pioneer

Source: “Drug-like antibodies with low immunogenicity in human panels designed with Latent-
X2” (arXiv:2512.20263, 2025)
Verified Claims:

» Success rate: 50% (9/18 targets)

Hit rate: Up to 25% of designs produced confirmed binders

Best affinity: 26.2 pM (HDACS8 scFv)—highest reported among all platforms

» Designs per target: Only 4-24 per modality (most efficient)

» Developability: 47% pass all 4 criteria; 80% pass 3/4

» Sequence novelty: All designs have CDR edit distance >11 to SAbDab; most >20

2.5.1 The Immunogenicity Breakthrough

Latent-X2 is the first and only platform to publish human immunogenicity data for Al-generated
antibodies:

Immunogenicity Assessment

Experimental Design:

» Target: TNFL9 (immunomodulatory target)

* Format: VHH (nanobody)

» Donors: 10 healthy human donors

» Controls: Approved VHH therapeutic caplacizumab; ImmunoCult and PHA positive
controls

Results:

 T-cell proliferation: No increase observed at 48 and 120 hours across all donors

» Cytokine release: No elevation detected at 120 hours across all donors

+ Comparison: Profile comparable to approved VHH caplacizumab

Binding Specificity Validation: Alanine mutagenesis of key CDRH3 residues (F116, W99,
D113) abolished binding, confirming designed epitope interactions.

2.5.2 Multi-Modality Capability

Unlike other platforms, Latent-X2 generates across multiple modalities from a single architec-
ture:

Table 3: Latent-X2 Multi-Modality Performance

Modality Targets Tested Success Rate Best Affinity

VHH 18 50% 45 nM (TNFL9)
scFv 18 Multiple targets 26.2 pM (HDACS8)
Macrocycles 2 80—90% 1.54 nM (PHD2)

Macrocycle Benchmarking: Against trillion-scale mRNA display (RaPID):
* PHD2: 9/10 designs bound vs. 5 reported RaPID hits; best affinity 1.54 nM vs. 729 nM
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+ K-Ras(G12D): 8/10 designs bound vs. 16 reported RaPID hits; best affinity 5.43 uM (com-
parable)

+ Search space reduction: 10 designs vs. >10'? compounds (>11 orders of magnitude)
Unique Differentiators:

* Only platform with published immunogenicity data

* Only platform with demonstrated macrocycle capability

« Joint sequence-structure generation (no refinement needed)

* Most efficient sampling (4—24 designs per target)

60.01 -
40.01 |-
26.2
0 I
0

RFAntibody Origin-1 Chai-2 JAM-2 Latent-X2

Best Reported Affinity (pM)

Figure 3: Best Reported Affinities by Platform. Latent-X2 achieves the highest reported
affinity (26.2 pM), followed by JAM-2 (<100 pM) and Chai-2 (453 pM). Source: Primary plat-
form publications (2024-2026).
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3 The Therapeutic Decathlon: A Composite Scoring System

0 10 20 30 40 50 60 70 80 90 100
WAaimnkhi: i'n NRNARND CAaAva 10/ 1\

H Binding (40%) E Structure (25%) [ Developability (20%) B Immunogenicity (15%)

Formula: DADB Score = (0.40 x Binding) + (0.25 X
Structure) + (0.20 x Developability) + (0.15 x Immunogenicity)

Figure 4: The Therapeutic Decathlon Scoring Weights. Binding remains the primary com-
ponent (40%), but no design can succeed without passing developability gatekeepers. The
20% weight for developability belies its importance—it acts as a binary filter (pass/fail) before
scoring. Weights derived from industry attrition data and regulatory guidance.

Design Principle

No Single Metric Dominates: Real drug discovery involves multi-parameter optimization.
A design with exceptional binding but poor developability is less valuable than a design
with good binding and excellent developability. The composite score reflects this reality.

The Gatekeeper Architecture
Designs must pass ALL gf%;@gf’tgfgggégéive non-
Z¢ sore. One failure = Zero.

m canomn
L U v \/

‘Pyrrhic Victory”

_— ; o S
Design; Developability = 0 Penalized

Solubility > 10 mg/mL

«Hy@obicity Z

Therapeutic

Score = Weighted Sum Candidate

Example: Medium
affinity, all gates pass

Figure 5: The Gatekeeper Architecture: Binary Thresholds Prevent “Cheating.” A de-
sign failing any developability gate receives a zero score for that component, regardless of
other properties. This forces models to optimize for manufacturable, stable designs rather than
exploiting computational shortcuts. Thresholds based on industry standards for therapeutic
antibody development.
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Table 4: Detailed Scoring Breakdown by Component. Each component has specific met-
rics, thresholds, and scoring functions. Developability uses binary gates; other components

use continuous scoring.

Component Key Metrics Threshold Scoring
1. BINDING (40% weight)
Interface pLDDT AlphaFold-Multimer  confi- > 80 Linear 0-100
dence
Interface RMSD Predicted vs. actual inter- <20A Linear 0-100
face
Contact Recovery Jnat from CAPRI > 0.5 Rank-based

SPR Hit Rate Experimental binding confir- > 3x background Binary then rank
mation
—log(Kp) Binding affinity < 1 nM preferred Continuous

2. STRUCTURE (25% weight)

Global RMSD Overall backbone accuracy <20A CAPRiI-style tiers
CDR-H3 RMSD Most variable loop accuracy <15A Weighted higher
Interface Quality CAPRI |_rms metric <20A Tiered scoring
3. DEVELOPABILITY (20% weight) — GATEKEEPER
Thermostability Melting temperature T > 60°Ce Binary gate
Aggregation % aggregate by SEC < 5% Binary gate
Solubility Concentration limit > 10 mg/mL® Binary gate
Hydrophobicity HIC retention proxy < 15 min Binary gate
4. IMMUNOGENICITY (15% weight) — NOVEL
T-cell Proliferation Ex vivo human PBMC assay No increase vs. background Binary gate
Cytokine Release IL-6, IL-8, IL-10, IFN-~v, TNF-  No elevation vs. background Binary gate
«
T-cell Epitope Score NetMHCpan prediction Low score Continuous
Humanness T20 / OASis comparison > 80% Continuous

“Industry best practice: T;,, > 65—70°C preferred; >60°C is minimum threshold
®High-concentration formulations (>100 mg/mL) may require higher thresholds

3.1 Component 1: Binding (40%)

The binding component evaluates the primary function of a therapeutic antibody:

* Interface pLDDT (30%): AlphaFold-Multimer confidence score; threshold >80 for high con-

fidence

« Interface RMSD (30%): Predicted vs. reference interface geometry; threshold <2.0 A

« SPR/BLI Hit Rate (25%): Experimental confirmation at >3x background signal

» Best Kp (15%): Ranked by —log(Kp); <1 nM preferred for therapeutic development

3.2 Component 2: Structure (25%)

Following CAPRI quality tiers adapted for de novo design:
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Table 5: CAPRI-Style Quality Tiers for Structural Assessment

Quality Level | _rms f,,, Score
High <10A >05 100
Good <20A >03 75
Acceptable <40A >0.1 50
Incorrect >4.0 A <01 0

3.3 Component 3: Developability — The Gatekeeper (20%)

Critical Innovation: Developability acts as a binary gate. Any design failing ANY threshold
receives ZERO for this component.

Table 6: Developability Gate Thresholds

Property Threshold Measurement Tool/Method

Thermostability T, > 60°C DSC or DSF Experiment / Predicted
Aggregation < 5% aggregate SEC-HPLC Experiment / CamSol
Solubility > 10 mg/mL Concentration limit Experiment / SKADE

Hydrophobicity HIC RT < 15 min  Hydrophobic interaction  Experiment / Predicted

Rationale: In real drug development, a candidate failing any developability gate is termi-
nated regardless of potency. Note: These represent minimum acceptable thresholds; industry
best practices often require T;,, > 65—-70°C and solubility >50 mg/mL for subcutaneous formu-
lations.

3.4 Component 4: Immunogenicity — The Novel Addition (15%)

Enabled by Latent-X2’s pioneering data, immunogenicity is now a scored component:

Table 7: Immunogenicity Scoring Components

Factor Assessment Weight
T-cell Proliferation No increase in 10-donor PBMC assay 40%
Cytokine Release No elevation in panel (IL-6, IL-8, IL-10, IFN-v, TNF-«) 35%
T-cell Epitope Prediction NetMHCpan low score 15%
Humanness T20 score comparison to OASis 10%

Key Takeaway

The Immunogenicity Gap: Immunogenicity causes 25% of late-stage clinical failures.
Despite this, only Latent-X2 has published human immunogenicity data. DADB-v1.0
makes immunogenicity a weighted component (15%), incentivizing models to generate
clinically viable candidates from the start.
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4 Dataset Architecture: Public Validation and Private Frontier

Security Note: Confidentiality of Private Test Set

Important: The specific targets in the Private Frontier Set are NOT disclosed in this
public document. Only generic target categories are listed below. The actual target
list is maintained in a separate, access-controlled document shared only with the DADB
Steering Committee and authorized evaluators under NDA. This prevents data leakage
and ensures fair blind evaluation.

PUBLIC VALIDATION SET PRIVATE FRONTIER SET
N = 15 targets | Unlimited submissions N = 10 targets | Limited submissions
Tier 1: Soluble oncology targets Tier 3: Unpublished GPCRs (N=3)
Tier 2: Viral glycoproteins Tier 3: lon channel targets (N=1)

Difficulty
Tier 2: Immune checkpoints E a| Tier 3: Tight junction proteins (N=1)
adiept
Tier 2: Growth factor receptors Tier 4: pMHC neoepitopes (N=2)

Purpose: Model calibration, Tier 4: Emerging pathogens (N=3)

public leaderboard, rapid iteration

Purpose: True generalization,
prevents overfitting, blind evaluation
Easy

Very Hard

\ 7 \ 7

Figure 6: Split-Set Architecture: Calibrating on Known, Testing on Frontier. The Public
Set enables rapid iteration on well-characterized targets. The Private Set provides unbiased
evaluation on unpublished, challenging targets. Structures in the Private Set remain under
embargo for 12 months. Specific target identities are confidential and not disclosed in
this document.

4.1 Target Selection Rationale

4.1.1 Tier 1: Easy (Soluble, Well-Characterized)

Validated oncology targets with approved antibody benchmarks
» Immune checkpoint proteins (e.g., PD-1 family)

» Angiogenesis factors with reference antibodies

Viral glycoproteins (SARS-CoV-2 lineage)

Classic model antigens (lysozyme)

4.1.2 Tier 2: Medium (Viral, Some Flexibility)
+ Influenza hemagglutinin with glycan shielding

» RSV fusion protein (pre-fusion conformation)
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* HIV Env with extreme glycosylation
» Receptor tyrosine kinases (EGFR family)

» Tumor-agnostic kinase targets

4.1.3 Tier 3: Hard (Membrane Proteins)

7-TM GPCRs with flexible extracellular loops

Orphan GPCRs with no approved drugs

lon channels with small extracellular domains

Tight junction proteins (claudin family)

4.1.4 Tier 4: Very Hard (Neoepitopes)

* KRAS mutant pMHC complexes (single-residue discrimination)

TP53 mutant pMHC complexes
» De novo designed epitopes with no natural binders

« Emerging viral variants (no prior antibody structures)

Note on Target Confidentiality: The specific identities of Tier 3 and Tier 4 targets are
withheld to prevent:

1. Data leakage: Platforms training on similar structures
2. Hyperparameter tuning: Optimization for specific target classes
3. Information asymmetry: Some platforms may have prior access
Target identities will be revealed only to participating platforms under NDA, with embargo
periods of 6—12 months post-assessment.
4.2 Data Leakage Prevention

Three orthogonal splitting strategies ensure no information contamination:

Table 8: Data Leakage Prevention Strategies

Strategy Methodology Rationale

A. Temporal Train: Pre-2020 PDB; Val: 2020-2022; Test: Post- Simulates real prediction; no
2023 future knowledge

B. Homology CDR-H3: 95% identity; Other CDRs: 85%; V-domain: Prevents sequence memo-
70% rization

C. Structural TM-score clustering at 0.8 threshold Captures structural similarity

despite low sequence iden-
tity
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5 Operational Infrastructure: The BioOps Pipeline

DADB-v1.0 BioOps Pipeline

User uploads Workflor Elastic compute
£d Moad 3

Model Weights

Seourity Scan

A

5. Inference 6. Scoring

Diffusion Sampling

Structure Pred

Figure 7: Eight-Stage BioOps Pipeline for Automated Evaluation. The pipeline container-
izes model execution, orchestrates GPU resources, runs standardized scoring, and applies
gatekeeper checks before updating the leaderboard. Each stage is version-controlled and re-
producible. Infrastructure stack: Harbor (registry), Nextflow (orchestration), Kubernetes (com-
pute), PostgreSQL (database).

CAPRI Metrics

Pass/Fail Visualization

LCAELCENE

Reproducibility Through Containerization: All models run in standardized Docker
containers with pinned dependencies, eliminating “it works on my machine” issues. The
Harbor registry versions every submission, enabling historical comparison and rollback.

5.1 Compute Requirements

Table 9: Estimated GPU Hours per Target by Platform

Task GPU Inference Scoring Total

RFAntibody inference  A100 80GB ~48 hrs® ~12 hrs ~60 hrs
JAM-2 inference A10040GB  ~8 hrs® ~6 hrs ~14 hrs
Chai-2 inference A10040GB ~12hrs® ~8hrs ~20 hrs
Origin-1 inference A10040GB ~24 hrs® ~10 hrs ~34 hrs
Latent-X2 inference A10040GB  ~6 hrs® ~4 hrs ~10 hrs

“Estimates based on reported design counts and platform documentation; proprietary platforms are approximations

Estimated Monthly Budget (AWS): $15,000-$25,000 for 100 target evaluations.

5.2 Fairness Mechanisms

1. Equal Query Budget: 100 designs per target maximum
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2. Fixed Seeds: 3 runs with different random seeds for stochastic models
3. Timeout Limits: 4 hours maximum per target

4. Resource Normalization: Scores weighted by compute cost (FLOPS)
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6 The Closed vs. Open Source Landscape
Table 10: Platform Access Comparison
Platform License  Weights API Access Benchmark Access
RFAntibody MIT Yes Self-hosted Direct container
JAM-2 Proprietary No Commercial only Partnership
Chai-2 Proprietary No Limited preview Partnership
Origin-1 Proprietary No Commercial only Partnership
Latent-X2 Proprietary No Selected partners Partnership
6.1 API-Based Evaluation Protocol
For proprietary models, we implement a Standardized Evaluation API:
class DADBEvaluationAPI:
"""Interface for proprietary model participation"""
def submit_design_task(
self,
target_pdb: bytes,
epitope: Optional[List[int]],
format_type: str,
num_designs: int = 100
) —> TaskID:
"""Submit design task to proprietary API"""
pass
def get_results(self, task_id: TaskID) -> DesignResults:
"""Retrieve results when complete"""
pass
def validate_ip_protection(self) -> IPAgreement:
"""Ensure designs are protected under NDA"""
pass
6.2 Incentive Structures for Commercial Participation
Table 11: Incentive Structure for Commercial Platform Participation
Incentive Description Value to Platform
Validation Badge “DADB-Validated” certification ~Marketing credibility
Leaderboard Ranking Public SOTA claim Competitive positioning
Early Access Benchmark target previews R&D advantage
Consortium Membership  Steering committee input Influence benchmark evolution
Co-authorship Methods paper participation Academic recognition

6.3 IP Protection Framework

1. Non-Disclosure Agreements: All unpublished targets under NDA
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Embargo Periods: Option to delay public results (6—12 months)
Design Confidentiality: Proprietary designs not disclosed without permission

Aggregated Reporting: Results reported as statistics, not individual designs

o M 0D

Private Target Confidentiality: Specific target identities never disclosed in public docu-
ments
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7 Service Offerings and Commercial Opportunities

7.1 Managed RFAntibody Service

Target Market: Biotech startups lacking DevOps/Al expertise

Table 12: Managed RFAntibody Service Tiers

Service Tier Features Pricing

Basic Web interface, standard targets $500/target
Professional  Priority queue, custom epitopes, 500 designs $2,000/target
Enterprise Private deployment, fine-tuning, dedicated support Custom ($50K+/year)

7.2 Fine-tuning-as-a-Service

Offering: Custom model fine-tuning on proprietary client data
Workflow:

1. Client provides experimental data (binding assays, structures)
DADB team fine-tunes open-source base model (RFAntibody/ESM-IF)

Deployed as private API or on-premise container

P 0D

Continuous improvement as client generates more data

7.3 Validation-as-a-Service

Partnership with CROs: High-throughput experimental validation

Table 13: Experimental Validation Services

Assay Throughput Turnaround Cost/Design
ELISA Screening 96/week 1 week $50
SPR Kinetics 24/week 2 weeks $200
SEC Aggregation 48/week 3 days $75
DSF Stability 48/week 3 days $60
PBMC Immunogenicity 10 donors 4 weeks $5,000

Design Principle

Open Core, Commercial Periphery: The benchmark itself remains open and non-profit,
but value-added services (managed hosting, fine-tuning, validation) generate sustainable
revenue while expanding access to powerful tools.
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8 Open Problems and Future Foundation Model Opportunities

8.1 Critical Unsolved Problems

Table 14: Critical Unsolved Problems in Antibody Design

Problem Current State Opportunity

In Vivo Translation ~ Poor correlation with clinical efficacy Physiologically-informed models
(r <0.3)

Immunogenicity ~70% accuracy for T-cell prediction Integrated B-cell + T-cell + clinical
only

Manufacturability Limited prediction accuracy CDMO data partnerships

Formulation Design  Experimental only Buffer/excipient optimization

Bispecific Design Manual engineering De novo multi-specific generation

ADC Optimization Empirical linker selection Integrated design

Tissue Penetration ~ Poor prediction Tumor microenvironment models

8.2 Foundation Model Opportunities

—

. Developability-Focused FM

* Primary objective: manufacturability, not just binding
+ Training data: Manufacturing datasets from CDMOs
* Innovation: Multi-objective optimization from scratch

N

. Epitope-Aware Conditional FM

 Explicit epitope specification as primary input
» Zero-shot generalization to novel epitopes
« Training: Epitope-annotated SAbDab + synthetic data

w

. pPMHC/Neoepitope Specialist FM
+ Single-residue discrimination capability
» HLA-agnostic design
« Training: Tumor antigen databases + pMHC structures

4. In Vivo Translation FM

» Predicts PK/PD from sequence/structure
« Training: Clinical trial data (where available)
* Innovation: Mechanistic + ML hybrid

()]

. Immunogenicity FM

* Human-cell-based training (following Latent-X2)
» Multi-donor prediction
 Training: PBMC response data from clinical trials
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8.3 Benchmark Evolution Roadmap

Table 15: DADB Evolution Roadmap

Version Timeline New Features

v1.0 (Current) Q12026 Full 5-platform comparison; immunogenicity track
v1.5 Q2 2026 Bispecific benchmark; Fc engineering

v2.0 Q4 2026 ADC track; linker-payload optimization

v2.5 2027 Cell therapy (CAR-T); TCR design

v3.0 2028 In vivo prediction; clinical correlation
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9 Conclusion: Toward Engineering Discipline

The field of de novo antibody design stands at an inflection point. Models that once seemed
impossible—generating novel antibodies with high affinity against challenging targets—are
now demonstrated reality across five major platforms. Yet the gap between computational
success and clinical viability remains wide.

DADB-v1.0 represents a necessary maturation. By introducing:

1. The Gatekeeper Architecture—binary developability thresholds that eliminate “pyrrhic vic-
tories”

2. The Therapeutic Decathlon—composite scoring that weights binding, structure, developa-
bility, and immunogenicity

3. Split-Set Evaluation—public targets for iteration, private targets for true generalization as-
sessment

4. Inclusive Participation—pathways for both open-source (RFAntibody) and proprietary (JAM-
2, Chai-2, Origin-1, Latent-X2) platforms

5. Reproducible Infrastructure—containerized BioOps pipeline using Harbor, Nextflow, and
Kubernetes

...we align computational incentives with clinical reality. A model that succeeds on DADB-
v1.0 will generate not just binders, but therapeutic candidates—molecules with the stability,
safety, and manufacturability properties to survive the attrition funnel of drug development.

The establishment of this benchmark depends on community adoption. We call on:

« Academic groups to submit open-source models and contribute unpublished structures for
private test sets

Industry partners to participate in API-based evaluation and share developability data
» Biopharma to validate benchmark predictions against clinical outcomes
* Funding agencies to support the infrastructure and wet-lab validation pipeline

The transition from “can we design antibodies computationally?” to “how do we optimally
deploy these capabilities?” requires rigorous, standardized evaluation. DADB-v1.0 provides
the framework. The community must now provide the participation.

Key Takeaway

Final Recommendation: Adoption of the DADB-v1.0 framework by open-source com-
munities (Baker Lab), proprietary platforms (Nabla, Chai, AbSci, Latent Labs), and bio-
pharma partners will accelerate the transition of Generative Biology from a research
curiosity to a reliable engineering discipline—ultimately bringing more effective antibody
therapeutics to patients faster.
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A Appendix: Metric Calculation Details

A.1 CAPRI Metrics Implementation

The DADB-v1.0 scoring system adapts the CAPRI (Critical Assessment of PRediction of Inter-
actions) metrics for de novo design evaluation:

1 X d .
| rms = N ;:1 |[xP"®¢ — x®f||2  (interface C, atoms) (1)
1Y q
_ pred _ _ref||2 :
L rms = 7 ?1: 1% yi|[* (allligand G, atoms) (2)

|contactsP™d N contacts'™’|
|contacts™’|

fnat = (3)

Quality thresholds follow CAPRI tiers: High (<1.0 A), Good (<2.0 A), Acceptable (<4.0 A).

A.2 Developability Gatekeeper Algorithm

def developability_gatekeeper(design) :
Binary gatekeeper for developability scoring.
Returns (pass: bool, score: float, failures: list)

thresholds = {

Tm’: (°>’, 60), # degrees Celsius
’aggregation’: (°<’, 5), # percent
’solubility’: (°>’, 10), # mg/mL
’hydrophobicity’: (’°<’, 15) # minutes (HIC)
}
failures = []

for prop, (operator, threshold) in thresholds.items():
value = design.properties[prop]
if not evaluate(value, operator, threshold):
failures.append(f"{prop}: {value}")

if failures:
return False, 0.0, failures

# Calculate continuous score for passing designs
score = weighted_average([

normalize(design.Tm, 60, 90),

1 - normalize(design.aggregation, 0, 5),

normalize(design.solubility, 10, 100),

1 - normalize(design.hydrophobicity, 0, 15)
1, weights=[0.3, 0.3, 0.25, 0.15])

return True, score, []
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A.3 Platform-Specific Notes
A.3.1 Latent-X2 Immunogenicity Protocol

The immunogenicity assessment for Latent-X2 followed this protocol:

1. Target: TNFL9 (immunomodulatory)
2. Donors: 10 healthy human PBMC donors
3. Controls:

* Positive: ImmunoCult, PHA
» Reference therapeutic: Caplacizumab (approved VHH)

4. Assays:

 T-cell proliferation at 48 and 120 hours
» Cytokine release (IL-6, IL-8, IL-10, IFN-~+, TNF-«) at 120 hours
 Cell viability (CellTiter-Glo)

5. Concentrations tested: 1.11, 3.33, 10, 30 ug/mL

Result: No detectable immunogenic response for any of the 4 tested VHH designs across
all donors and concentrations.
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