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Abstract

De novo computational antibody design has emerged as a transformative approach to therapeu-
tic discovery, with recent platforms achieving 15–40% experimental hit rates and sub-nanomolar
binding affinities. However, the application of these tools to cancers with the greatest unmet ther-
apeutic need remains limited by fragmented structural data, unclear target prioritization, and the
absence of systematic frameworks for campaign design. Here we present a structured approach to
selecting and prioritizing antibody targets across five of the most challenging cancer indications:
malignant peripheral nerve sheath tumor (MPNST), diffuse intrinsic pontine glioma (DIPG/DMG),
neuroblastoma, glioblastoma (GBM), and pancreatic ductal adenocarcinoma (PDAC). Through
systematic analysis of 43 target–indication pairs using the Open Targets Platform, RCSB PDB
structural data, and clinical trial registries, we identify 10 structurally actionable targets ranked by
cross-indication therapeutic impact and computational design readiness. We introduce a four-tier
structural readiness classification and demonstrate that only 14 of 43 evaluated targets possess
the antibody–antigen co-crystal structures required for structure-guided de novo design. We fur-
ther present rfab-harness, an open-source campaign orchestration tool that wraps the three-stage
RFAntibody pipeline (RFdiffusion → ProteinMPNN → RoseTTAFold2) with automated target
preparation, multi-GPU parallelization, and candidate ranking. Ten campaign configurations tar-
geting B7-H3, EGFRvIII, EGFR, GPC2, mesothelin, CD47, EphA2, CEACAM5, and HER2 are
provided as ready-to-execute specifications for VHH nanobody design, with particular emphasis on
formats offering improved blood–brain barrier penetration for CNS tumors and enhanced stromal
penetration for pancreatic cancer. This work establishes a reproducible framework for translating
computational protein design capabilities into therapeutic antibody candidates for cancers where
effective treatments do not yet exist.

Keywords: de novo antibody design, computational protein design, RFAntibody, cancer im-
munotherapy, VHH nanobody, MPNST, DIPG, neuroblastoma, glioblastoma, pancreatic cancer

1 Introduction

The past two years have witnessed a paradigm
shift in antibody discovery. Where traditional

approaches required immunization campaigns
lasting months followed by extensive screening of
106–109 clones, de novo computational platforms
can now generate antibody candidates in silico in
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hours. Watson et al. demonstrated that RFAnti-
body, a three-stage pipeline combining RFdiffu-
sion for backbone generation, ProteinMPNN for
sequence design, and RoseTTAFold2 for struc-
ture prediction, achieves experimental binding
rates of 15–17% with affinities reaching the pico-
molar range [1]. Concurrently, proprietary plat-
forms including Absci’s JAM-2, Chai Discovery’s
Chai-2, Iambic Therapeutics’ Origin-1, and La-
tent Labs’ Latent-X2 have reported similar or
superior hit rates [2, 3].

Despite these advances, the application of de
novo design to the cancers with the greatest un-
met need has been remarkably limited. The
original RFAntibody demonstration targeted in-
fluenza hemagglutinin, Clostridioides difficile
toxin B, respiratory syncytial virus, a PHOX2B
neoantigen, and the SARS-CoV-2 receptor bind-
ing domain—none of which represent the can-
cers responsible for the most intractable mortal-
ity burden. Five indications stand out for their
combination of devastating clinical outcomes
and near-complete absence of effective antibody
therapeutics: MPNST (5-year survival ∼15%
when metastatic, no approved antibody ther-
apy), DIPG/DMG (median survival ∼11 months,
universally fatal in children), high-risk neurob-
lastoma (∼50% survival despite aggressive mul-
timodal treatment), glioblastoma (median sur-
vival ∼15 months, no antibody therapy improv-
ing overall survival), and pancreatic ductal ade-
nocarcinoma (5-year survival ∼12%, third lead-
ing cause of cancer death).

Each of these indications presents unique bio-
logical challenges for antibody therapy. CNS tu-
mors (DIPG, GBM) are shielded by the blood–
brain barrier, which permits less than 0.1% of
systemically administered IgG (∼150 kDa) to
reach the tumor parenchyma [4]. Pancreatic can-
cer generates a dense desmoplastic stroma com-
prising up to 80% of tumor mass, severely lim-
iting antibody diffusion [5]. MPNST is driven
primarily by intracellular loss-of-function events
(NF1, SUZ12/EED), creating a paucity of drug-
gable surface antigens. Neuroblastoma’s most
validated target, GD2, is a ganglioside rather
than a protein, precluding standard computa-
tional design approaches.

These challenges motivate two central ques-
tions that this work addresses. First, which sur-
face antigens across these five indications have
sufficient structural data and clinical rationale
to justify computational antibody design cam-
paigns? Second, can the de novo design pro-
cess be systematized into a reproducible, scal-
able framework that enables researchers to go
from target selection to designed candidates with
minimal manual intervention?

To answer these questions, we conducted a sys-
tematic analysis of 43 target–indication pairs, de-
veloped a four-tier structural readiness classifi-
cation, and built rfab-harness, an open-source
campaign orchestration tool. We identify 10
priority targets and provide complete, ready-
to-execute campaign configurations for VHH
nanobody design—a format chosen specifically
for its potential to address the BBB and stromal
penetration challenges that have defeated con-
ventional antibody therapies in these indications.

2 Methods

2.1 Target Identification and Prioriti-
zation

Target identification employed three complemen-
tary data sources queried between January and
February 2026.

Open Targets Platform. Disease–target
associations were retrieved via the Open Targets
GraphQL API (release 25.02) for each indication
using established ontology identifiers: MPNST
(EFO_0000760), DIPG (EFO_1000026),
DMG (EFO_0020983), neuroblastoma
(EFO_0000621), GBM (EFO_0000519), and
PDAC (EFO_0000232). Targets were ranked by
overall association score (0–1 scale integrating
genetic, somatic, drug, literature, and animal
model evidence). The top 50 targets per indica-
tion were screened for surface accessibility and
antibody-targetable extracellular domains.

RCSB Protein Data Bank. For each candi-
date target, the PDB was queried for (1) any de-
posited structure of the extracellular domain and
(2) antibody–antigen co-crystal or cryo-EM com-
plex structures. Structures were evaluated by
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resolution, completeness of the extracellular do-
main, and presence of defined antibody–antigen
interfaces.

Clinical trial registries and literature.
ClinicalTrials.gov, PubMed (2022–2026), and
conference proceedings from ASCO 2024–2025,
AACR 2025, and ASH 2024 were searched for
antibody-based therapies (monoclonal antibod-
ies, antibody–drug conjugates, bispecific anti-
bodies, CAR-T cells, and radioimmunotherapy)
targeting each candidate.

2.2 Structural Readiness Classifica-
tion

We developed a four-tier classification to assess
the feasibility of structure-guided de novo anti-
body design for each target:
• Tier 1 (Excellent): Multiple antibody–

antigen complex structures at <3 Å resolution
with well-defined epitopes.

• Tier 2 (Good): At least one antibody–
antigen complex structure available.

• Tier 3 (Limited): Target extracellular do-
main structure available but no antibody com-
plex; epitope must be inferred from ligand
complexes or computational prediction.

• Tier 4 (Insufficient): No usable extracel-
lular domain structure, or target is a non-
protein antigen (e.g., ganglioside).
Only Tier 1 and Tier 2 targets were consid-

ered suitable for immediate de novo design cam-
paigns. Tier 3 targets were flagged as candidates
for AlphaFold3-based structure prediction prior
to design.

2.3 Cross-Indication Driver Analysis

Each target was mapped across all five indica-
tions to identify “driver” targets—those with
therapeutic relevance in multiple cancer types. A
target was classified as a cross-indication driver
if it appeared in ≥2 of 5 indications with pub-
lished preclinical or clinical evidence supporting
antibody-based targeting.

2.4 Campaign Orchestration Frame-
work

rfab-harness is an open-source Python package
that wraps the RFAntibody pipeline [1] with au-
tomated campaign management. The tool ac-
cepts YAML configuration files specifying target
PDB coordinates, epitope and hotspot residues,
antibody format (VHH or scFv), CDR loop
length constraints, and pipeline parameters. It
provides:
1. Target preparation: PDB download from

RCSB, chain extraction, epitope-guided trun-
cation with secondary structure preservation,
and framework template conversion to the
HLT format required by RFAntibody.

2. Pipeline execution: Sequential orches-
tration of RFdiffusion (backbone genera-
tion), ProteinMPNN (CDR sequence design),
and RoseTTAFold2 (structure prediction and
scoring), with checkpoint/resume support.

3. Multi-GPU parallelization: Automatic
splitting of Quiver (.qv) files across available
GPUs with per-device CUDA isolation.

4. Automated analysis: Score extraction
(pAE, RMSD, ∆∆G), threshold filtering, com-
posite ranking, HTML/CSV reporting, and
PDB/FASTA export of top candidates.
The harness validates 15 configuration con-

straints before execution, including epitope–
hotspot consistency, antibody format compati-
bility, CDR loop range bounds, and framework
chain requirements.

2.5 Epitope and Hotspot Derivation

For each campaign target, epitope residues were
defined as target residues with any heavy atom
within 4.5 Å of an antibody heavy atom in the ref-
erence complex structure. Hotspot residues (3–5
per target) were selected from the epitope set
based on three criteria: (1) high buried surface
area upon complex formation, (2) hydrophobic
or aromatic character (Phe, Trp, Tyr, Leu, Ile,
Val preferred), and (3) spatial centrality within
the epitope patch.

For well-characterized targets
(EGFR/cetuximab, HER2/trastuzumab,
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CD47/magrolimab), published epitope defi-
nitions were used directly. For newer structures
(9LME for B7-H3, 8UKV for EGFRvIII, 6WJL
for GPC2), interface contacts were computed
using BioPython’s NeighborSearch algorithm.

2.6 Antibody Format Selection

VHH nanobody format (∼15 kDa, single-
domain) was selected for all 10 campaigns based
on three considerations: (1) improved blood–
brain barrier penetration relative to full IgG
(∼150 kDa) for CNS tumor targets [8], (2) en-
hanced stromal penetration for pancreatic cancer
targets, and (3) compatibility with the RFAnti-
body pipeline, which has demonstrated success-
ful VHH design with the NbBCII10 framework
template.

3 Results

3.1 Landscape of Antibody-
Targetable Antigens

Systematic screening identified 43 target–
indication pairs across the five cancer types
(Table 1). The number of potential targets var-
ied dramatically by indication: GBM yielded 11
evaluated targets (from 9,906 Open Targets as-
sociations), PDAC produced 10 (from extensive
preclinical literature), neuroblastoma generated
8, MPNST yielded 7 (reflecting the paucity
of validated surface antigens in sarcoma), and
pediatric gliomas produced 7 targets.

Table 1: Landscape of evaluated targets per indica-
tion.

Indication Targets Tier 1–2 Tier 3 Tier 4

MPNST 7 2 2 3
DIPG/DMG 7 2 3 2
Neuroblastoma 8 3 3 2
GBM 11 7 2 2
PDAC 10 4 3 3

Total (unique) 28 14 8 6

The structural readiness distribution reveals
a critical bottleneck: only 14 of 28 unique tar-

gets (50%) have any antibody–antigen complex
structure in the PDB. This fraction drops further
when considering resolution and completeness re-
quirements for reliable de novo design.

3.2 Cross-Indication Driver Targets

Three targets emerged as cross-indication drivers
appearing in ≥4 of 5 indications (Table 2).

Table 2: Cross-indication driver targets.

Target M
P

N
ST

D
IP

G

N
B

G
B

M

P
D

A
C

Total Tier

B7-H3 #1 #2 #2 #3 — 4/5 2
GD2 #4 #1 Est. #10 — 4/5 4
EGFR #2 #6 — #1 #4 4/5 1
HER2 #6 — — #4 #6 3/5 1

B7-H3 (CD276) is the most striking pan-
cancer target. It is overexpressed in MPNST
(58% of sarcomas), DIPG (uniformly on tu-
mor cells and vasculature), neuroblastoma, and
GBM, while exhibiting limited normal tissue
expression. Critically, B7-H3-directed CAR-
T cells received FDA Breakthrough Therapy
Designation for DIPG in April 2025 follow-
ing Phase I results showing median survival of
19.8 months from diagnosis (compared to his-
torical ∼11 months) [6]. The January 2025
deposition of 9LME—the first publicly avail-
able B7-H3 nanobody complex structure at
2.4 Å resolution—now enables structure-guided
de novo design for this target.

GD2, while appearing in 4/5 indications with
dramatic clinical results (complete response >30
months in DIPG [7]), is a ganglioside rather than
a protein, excluding it from standard computa-
tional antibody design workflows.

EGFR/EGFRvIII benefits from the richest
structural data of any target in this analysis,
with multiple complex structures at 1.8–2.8 Å
resolution. The EGFRvIII variant (exons 2–7
deletion) is particularly attractive for GBM be-
cause it is 100% tumor-specific, being completely
absent from normal tissues.
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3.3 Structural Readiness Assessment

The four-tier classification stratified all 28 unique
targets by computational design feasibility (Fig-
ure ??).

Tier 1 targets (EGFR, EGFRvIII, HER2,
PD-L1, VEGF-A) possess multiple high-
resolution antibody–antigen complexes enabling
confident epitope selection. However, two Tier 1
targets (PD-L1 in GBM, VEGF-A/bevacizumab
in GBM) were excluded from campaign design
because they have failed to demonstrate overall
survival benefit in their primary indication
despite extensive clinical testing.

Tier 2 targets (GPC2, MSLN, CD47,
EphA2, B7-H3, CEACAM5) represent the
highest-value opportunities for de novo design.
Each has exactly one antibody–antigen com-
plex structure, providing epitope definition with-
out the crowded intellectual property landscape
of Tier 1 targets. GPC2 (6WJL, D3 Fab
at 3.3 Å) and mesothelin (4F3F, amatuximab
Fab at 2.6 Å) are particularly attractive: GPC2
has the best differential expression among novel
neuroblastoma targets, while mesothelin is ex-
pressed in 85–89% of PDAC tumors.

Tier 3 and 4 targets, including CLDN18.2
(the most clinically advanced new PDAC target),
IL-13Ra2 (GBM rank #2), and ErbB3 (MP-
NST rank #3), were excluded from immediate
campaign design despite strong clinical rationale.
These targets require AlphaFold3-based struc-
ture prediction or homology modeling before de
novo design can proceed.

3.4 Priority Target Selection

Integrating cross-indication impact, structural
readiness, and therapeutic potential, we selected
10 targets for de novo VHH nanobody design
campaigns (Table 3).

The selection spans all five indications:
DIPG/GBM (6 targets), PDAC (4 targets), neu-
roblastoma (1 target), and MPNST (3 targets,
shared with GBM/PDAC). The two MSLN cam-
paigns (#5 and #10) target non-overlapping epi-
topes on the same protein, enabling potential bis-
pecific VHH pairing for avidity-enhanced PDAC

therapy.

3.5 Campaign Configuration and Or-
chestration

Each of the 10 targets was configured as a com-
plete rfab-harness campaign specifying the tar-
get PDB structure, epitope residues derived from
the reference antibody–antigen complex, 3–5 hy-
drophobic hotspot residues for CDR loop place-
ment, VHH format with the NbBCII10 frame-
work template, and pipeline parameters (10,000
backbone designs, 5 sequences per backbone, 10
RF2 recycling iterations).

Campaign-specific design choices included:
Extended H3 loops (range 7–15 or 8–15

residues) were specified for targets with deep epi-
tope pockets (B7-H3, EGFRvIII, GPC2, CD47,
EphA2, CEACAM5, MSLN C-term), while the
standard range (5–13) was retained for flat epi-
tope surfaces (EGFR Domain III).

Relaxed filtering thresholds (pAE ≤ 12,
RMSD ≤ 2.5, ∆∆G ≤ −18) were applied to the
CEACAM5 campaign due to the lower resolution
of the cryo-EM template (3.11 Å), which intro-
duces greater uncertainty in predicted structural
metrics.

Increased truncation buffer (12 Å vs. stan-
dard 10 Å) was used for targets with large, multi-
domain extracellular regions (B7-H3, GPC2,
CEACAM5) to preserve structural context
around the epitope.

The batch runner script enables sequential or
parallel execution of all 10 campaigns with auto-
matic failure handling and cross-campaign result
aggregation. At 10,000 designs per campaign,
the total computational requirement is approx-
imately 400–540 GPU-hours on NVIDIA A100
hardware, reducible to 2–3 days of wall time with
8 GPUs running in parallel.

4 Discussion

4.1 The Structural Data Bottleneck

Our analysis reveals that structural data avail-
ability, not biological understanding, is the pri-
mary bottleneck limiting computational anti-
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Table 3: Ten priority targets selected for de novo VHH design campaigns.

# Target Indication(s) PDB Complex Res. Therapeutic Rationale Tier

1 B7-H3 MPNST, DIPG, NB, GBM 9LME (Nb) 2.4 Å Pan-cancer; FDA Breakthrough DIPG 2
2 EGFRvIII GBM 8UKV (Nb 34E5) — 100% tumor-specific 1
3 EGFR Dom. III GBM, MPNST, PDAC 1YY9 (cetuximab) 2.6 Å Cross-indication 4/5 1
4 GPC2 Neuroblastoma 6WJL (D3 Fab) 3.3 Å Best NB differential expression 2
5 MSLN (N-term) PDAC 4F3F (amatuximab) 2.6 Å 85–89% PDAC expression 2
6 CD47 GBM 5IWL (magrolimab) — Redirects TAMs 2
7 EphA2 GBM 3SKJ (1C1 Fab) 2.5 Å Dual tumor + vasculature 2
8 CEACAM5 PDAC 8BW0 (tusamitamab) 3.1 Å Best clinical ORR in PDAC 2
9 HER2 Dom. IV GBM, MPNST 1N8Z (trastuzumab) 2.5 Å ∼80% GBM expression 1
10 MSLN (C-term) PDAC 7U8C (15B6 Fab) — Bispecific potential with #5 2

body design for cancer targets. Several targets
with compelling clinical evidence—CLDN18.2
(FDA Fast Track for PDAC), IL-13Ra2 (dra-
matic complete responses in GBM CAR-T
trials), ErbB3/HER3 (functionally validated
kinase-dead RTK in MPNST)—cannot currently
be subjected to structure-guided de novo design
because no antibody–antigen complex structures
exist in the public domain.

This structural gap is not random. The tar-
gets most in need of new therapeutic approaches
are often those for which antibody drug devel-
opment has been least explored, creating a self-
reinforcing deficit: without approved antibodies,
there is less incentive to solve complex structures;
without structures, computational design cannot
accelerate discovery.

The recent deposition of 9LME (B7-H3
nanobody complex, January 2025) illustrates
how a single structural determination can unlock
computational design for a target relevant to four
cancer indications simultaneously. We advocate
for prioritized structural biology efforts targeting
the Tier 3 gaps identified in this analysis, partic-
ularly IL-13Ra2, ErbB3, and CLDN18.2.

4.2 VHH Nanobodies as a Privileged
Format

The consistent selection of VHH format across
all 10 campaigns reflects a deliberate therapeu-
tic strategy rather than a technical default. For
CNS tumors (DIPG, GBM), the ∼10-fold size
reduction from IgG (∼150 kDa) to VHH (∼15

kDa) may improve blood–brain barrier penetra-
tion, although systemic VHH pharmacokinet-
ics remain challenging due to rapid renal clear-
ance. For pancreatic cancer, where the desmo-
plastic stroma creates an antibody diffusion bar-
rier, smaller formats offer superior tissue pene-
tration. For ADC applications, VHH nanobod-
ies can serve as targeting moieties with favorable
tumor-to-normal tissue ratios.

The RFAntibody pipeline has been validated
for VHH design using the NbBCII10 framework,
making this format immediately actionable. Fu-
ture work should explore scFv format for targets
where bivalent binding or Fc-mediated effector
functions are essential.

4.3 Cross-Indication Efficiency

The identification of cross-indication driver tar-
gets (B7-H3 in 4/5, EGFR in 4/5 indications)
creates efficiency in the design-to-clinic pipeline.
A single high-affinity VHH nanobody against B7-
H3 could, in principle, be developed as a thera-
peutic or diagnostic agent across MPNST, DIPG,
neuroblastoma, and GBM—four indications that
collectively affect approximately 15,000 patients
annually in the United States, predominantly
children and young adults.

This cross-indication potential is amplified by
the modular nature of VHH nanobodies: a vali-
dated B7-H3 binder can be formatted as a naked
nanobody, an ADC payload carrier, a CAR-T
targeting domain, a bispecific component, or a
radioimmunotherapy vector, each addressing dif-
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ferent therapeutic modalities within the same
cancer types.

4.4 Limitations

Several important limitations should be acknowl-
edged. First, the epitope residues specified in
campaign configurations are derived from ref-
erence antibody–antigen complexes and repre-
sent one specific binding mode; the designed
VHH nanobodies will necessarily adopt different
paratope geometries that may alter the effective
epitope. Second, computational metrics (pAE,
RMSD, ∆∆G) from the RFAntibody pipeline
are predictive but not definitive—experimental
validation through yeast surface display, sur-
face plasmon resonance, and cellular binding
assays remains essential. Third, our struc-
tural readiness classification does not account
for target biology factors such as antigen shed-
ding (MSLN, MUC16), conformational hetero-
geneity (EGFR active/inactive states), or post-
translational modifications that may affect de-
signed antibody binding. Fourth, the therapeu-
tic impact of any computationally designed anti-
body depends critically on downstream factors—
manufacturing, formulation, pharmacokinetics,
immunogenicity, and clinical trial design—that
are beyond the scope of this computational anal-
ysis.

4.5 Clinical Impact Potential

If even a subset of the designed VHH candidates
achieve binding affinities comparable to RFAnti-
body’s published results (low nanomolar to sub-
nanomolar), the clinical implications could be
substantial. For DIPG, where median survival
is 11 months and no approved therapy exists,
a high-affinity B7-H3 or EGFRvIII nanobody
could serve as an ADC or radioimmunotherapy
warhead deliverable via intracerebroventricular
administration. For pancreatic cancer, VHH-
based ADCs targeting MSLN (85–89% expres-
sion) or CEACAM5 (20% ORR with existing
ADC) could improve response rates through su-
perior stromal penetration. For neuroblastoma,
GPC2-targeting VHH nanobodies could provide

a protein-based alternative to the ganglioside-
directed anti-GD2 antibodies that cause severe
neuropathic pain.

The combination of unmet need (collective
5-year survival weighted average <25% across
these indications), validated targets (clinical
trial evidence for 9/10 selected targets), and now-
available computational tools creates a unique
window for de novo antibody design to impact
cancer mortality in indications where progress
has been slowest.

5 Conclusion

We present a systematic framework for apply-
ing de novo computational antibody design to
challenging cancer targets. Through analysis
of 43 target–indication pairs across five cancers
with devastating outcomes, we identify struc-
tural data as the critical bottleneck and provide
a four-tier readiness classification to guide tar-
get prioritization. Ten priority targets with de-
fined epitopes, structural templates, and cam-
paign configurations are provided as an immedi-
ately actionable resource for the computational
biology community. The rfab-harness tool and
associated campaign specifications lower the bar-
rier to entry for researchers seeking to design
therapeutic antibody candidates against cancers
with the greatest unmet need. All code, configu-
rations, and analysis are available as open-source
resources.

Data and Code Availability

The rfab-harness campaign orchestration
tool, all 10 cancer driver campaign config-
urations, the batch runner script, and the
target research document are available at:
https://github.com/inventcures/repro_
rfantibody_for-cancer-targets. The tool
requires the RFAntibody repository [1] for
pipeline execution.
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