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Abstract

Background: Antibody developability�the likelihood that a candidate molecule will
succeed through manufacturing and clinical development�is a critical determinant of ther-
apeutic success. Recent de novo antibody design platforms have claimed that their models
achieve favorable developability pro�les �for free,� without explicit optimization. We inves-
tigated this claim using the Fitness Landscape for Antibodies (FLAb) benchmark.

Methods: We analyzed sequence-based developability features across four antibody
sources: the Structural Antibody Database (SAbDab, n=500), the Observed Antibody
Space (OAS, n=500), the CST therapeutic antibody set (n=137), and simulated sequences
mimicking de novo design distributions (n=500). We developed immunogenicity prediction
models using aggregated clinical ADA data from FLAb (n=217). Additionally, we bench-
marked ESM-2 (650M) as a zero-shot predictor for thermostability, expression, binding, and
aggregation properties.

Results: Structural databases (SAbDab) showed signi�cantly better developability fea-
tures than natural repertoires (OAS): lower mean hydrophobicity (Cohen's d = -0.43, p <
0.001), fewer liability sequence motifs (d = -1.19, p < 0.001), and reduced aromatic content
(d = -0.31, p < 0.001). De novo designs exhibited pro�les intermediate between SAbDab
and OAS, with no signi�cant di�erence from SAbDab in net charge (p = 0.07) or aromatic
content (p = 0.73). For immunogenicity prediction, ensemble models combining sequence
features, humanness scores, and embeddings achieved AUROC of 0.74, signi�cantly outper-
forming humanness-only baselines (AUROC = 0.28). ESM-2 zero-shot predictions showed
weak correlations with experimental properties (Spearman ρ = -0.27 to +0.18), with bind-
ing showing a weak positive correlation while other properties showed negative correlations,
consistent with the FLAb paper's �nding that unsupervised PLMs require �ne-tuning for
developability prediction.

Conclusions: Our �ndings support the hypothesis that de novo antibody design mod-
els may inherit developability biases from their structural training data (PDB/SAbDab),
providing a mechanistic explanation for reported �free� developability. However, immuno-
genicity prediction remains challenging due to limited training data (n=217), highlighting a
critical gap in antibody developability assessment.

Data and Code Availability: Analysis code is available at https://github.com/

inventcures/flab_gray-lab-jhu_ab_chars. FLAb data is available at https://github.
com/Graylab/FLAb.

1 Introduction

Therapeutic antibody development is a high-stakes endeavor with signi�cant attrition rates. A
substantial fraction of clinical failures are attributable to developability issues, including poor
expression, aggregation, and immunogenicity [Jain et al., 2017]. These failures represent sub-
stantial �nancial losses and, more critically, delays in delivering potentially life-saving therapies
to patients.
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Recent advances in machine learning have enabled de novo antibody design, where compu-
tational models generate novel antibody sequences without relying on immunization or display
technologies. Notably, several platforms have reported that their designed antibodies exhibit
favorable developability pro�les without explicit optimization for these properties [Bennett et
al., 2024, Shanehsazzadeh et al., 2023].

Latent Labs, developers of the Latent-X2 platform, made a particularly striking claim: �De-
signed molecules exhibit developability pro�les that match or exceed those of approved anti-
body therapeutics... without optimization, �ltering, or selection. [...] These properties
emerge directly from the model� [Latent Labs, 2024].

This raises a fundamental question: Do de novo antibody design models learn developability

implicitly from their training data?

1.1 Hypotheses

We considered three possible explanations for the reported �free developability� phenomenon:

1. Weak metrics hypothesis: Current in silico developability metrics may be insu�ciently
stringent, allowing most sequences to pass regardless of true developability.

2. Training data bias hypothesis: Structural databases like the Protein Data Bank (PDB)
and Structural Antibody Database (SAbDab) may contain an inherent bias toward devel-
opable antibodies, as poorly behaved sequences are less likely to be successfully crystallized
and deposited.

3. Undisclosed �ltering hypothesis: Reported results may re�ect post-hoc �ltering or
framework selection not fully described in publications.

In this study, we primarily tested hypothesis 2 using the Fitness Landscape for Antibod-
ies (FLAb) benchmark [Chungyoun et al., 2024], a comprehensive dataset of experimentally
measured antibody properties.

1.2 The FLAb Benchmark

FLAb aggregates experimental data across multiple developability-relevant properties:

� Thermostability (Tm): Measurements from di�erential scanning �uorimetry and calorime-
try

� Expression: Titers from HEK293 and CHO expression systems

� Binding a�nity: Surface plasmon resonance and �ow cytometry measurements

� Aggregation: Dynamic light scattering and size-exclusion chromatography data

� Polyreactivity: ELISA-based polyspeci�city measurements

� Immunogenicity: Anti-drug antibody (ADA) response data from clinical studies

The benchmark includes data from multiple sources, notably the Jain et al. therapeutic
antibody characterization studies [Jain et al., 2017, 2024].
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2 Methods

2.1 Data Sources

2.1.1 FLAb Dataset

We downloaded the complete FLAb dataset (v1.0) containing 160 CSV �les across six prop-
erty categories. The dataset was accessed via AWS S3 and the Gray Lab GitHub repository
[Chungyoun et al., 2024].

2.1.2 Comparison Datasets

For the developability comparison analysis, we assembled four datasets:

1. SAbDab (n=500): Randomly sampled antibody sequences from the Structural Antibody
Database [Dunbar et al., 2014], representing crystallized antibodies.

2. OAS Natural (n=500): Randomly sampled sequences from the Observed Antibody Space
[Olsen et al., 2022], representing natural human B-cell repertoires from next-generation
sequencing.

3. CST Therapeutics (n=137): The complete Jain et al. therapeutic antibody panel [Jain
et al., 2017], representing clinically-relevant molecules.

4. De Novo (Simulated) (n=500): Simulated sequences sampled from distributions match-
ing reported characteristics of de novo designs [Watson et al., 2023]. Note: These are not
actual de novo design outputs but synthetic sequences used as a proxy to test the training
data bias hypothesis.

2.2 Feature Computation

For each antibody sequence, we computed the following developability-relevant features:

� Mean hydrophobicity: Average Kyte-Doolittle hydrophobicity score across all residues.
Higher values indicate more hydrophobic sequences, associated with increased aggregation
risk.

� Net charge at pH 7.4: Sum of charged residues (Asp, Glu as -1; Lys, Arg as +1; His as
+0.5). Extreme charges may a�ect solubility and pharmacokinetics.

� Liability motif count: Number of sequence motifs associated with chemical degradation,
including:

� Asparagine deamidation sites (NG, NS, NT, NN)

� Aspartate isomerization sites (DG, DS, DT)

� Methionine oxidation (solvent-exposed M)

� N-linked glycosylation sites (N-X-S/T where X ̸= P)

� Aromatic content: Fraction of aromatic residues (F, W, Y), associated with aggregation
propensity in CDRs.
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2.3 Statistical Analysis

Group comparisons were performed using the Mann-Whitney U test (two-sided), appropriate
for non-normally distributed data. E�ect sizes were quanti�ed using Cohen's d:

d =
x̄1 − x̄2
spooled

(1)

where spooled =

√
(n1−1)s21+(n2−1)s22

n1+n2−2
Signi�cance was assessed at α = 0.05 with no correction for multiple comparisons, as this

was an exploratory analysis.

2.4 Immunogenicity Prediction

2.4.1 Dataset

We used immunogenicity data aggregated in FLAb (n=217), which contains binary immuno-
genicity labels (immunogenic vs. non-immunogenic) derived from clinical anti-drug antibody
(ADA) response data from multiple therapeutic antibody studies.

2.4.2 Features

Three feature categories were evaluated:

1. Expert features: Sequence-based physicochemical properties (hydrophobicity, charge,
liability motifs)

2. Humanness features: Sequence similarity to human germline V-genes

3. Embedding features: 1280-dimensional representations from ESM-2 (650M parameters)
[Lin et al., 2023]

2.4.3 Models

We trained three classi�ers using leave-one-out cross-validation (appropriate for small datasets):

� Logistic Regression with L2 regularization

� Gradient Boosting (XGBoost)

� Random Forest

Performance was evaluated using accuracy and area under the receiver operating character-
istic curve (AUROC).

2.5 Computational Infrastructure

All analyses were conducted using Modal (https://modal.com) serverless cloud infrastructure
with:

� Python 3.10 runtime

� PyTorch 2.2.0 for deep learning operations

� ESM-2 (650M) for protein language model embeddings

� scikit-learn 1.4 for machine learning models

Total computational cost was approximately $15-20 USD.
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3 Results

3.1 Structural Databases Exhibit Developability Bias

Our primary �nding is that antibodies in structural databases (SAbDab) show signi�cantly
better developability pro�les compared to natural repertoires (OAS). Table 1 summarizes the
key comparisons.

Table 1: Comparison of developability features: SAbDab vs. OAS Natural Repertoire

Feature SAbDab OAS Cohen's d p-value

Mean hydrophobicity -0.498 -0.327 -0.43 <0.001
Net charge 2.10 3.14 -0.25 <0.001
Liability motifs 2.03 3.96 -1.19 <0.001
Aromatic content 0.080 0.088 -0.31 <0.001

The most striking di�erence was in liability motif count, where SAbDab sequences contained
approximately half as many degradation-prone motifs as OAS sequences (2.03 vs. 3.96, d =
-1.19). This large e�ect size suggests strong selection against chemically unstable sequences in
structural databases.

3.2 Therapeutic Antibodies Show Optimized Pro�les

CST therapeutic antibodies demonstrated the most favorable developability pro�les across all
metrics (Table 2).

Table 2: Comparison of developability features: CST Therapeutics vs. OAS Natural Repertoire

Feature CST OAS Cohen's d p-value

Mean hydrophobicity -0.604 -0.327 -0.75 <0.001
Net charge 0.94 3.14 -0.56 <0.001
Liability motifs 1.36 3.96 -1.71 <0.001
Aromatic content 0.069 0.088 -0.79 <0.001

The extremely large e�ect size for liability motifs (d = -1.71) re�ects the extensive optimiza-
tion that therapeutic antibodies undergo during lead optimization.

3.3 De Novo Designs Resemble Structural Databases

De novo antibody designs showed developability pro�les intermediate between SAbDab and
OAS, but statistically closer to SAbDab for key metrics (Table 3).
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Table 3: De novo designs compared to SAbDab and CST Therapeutics

Comparison Feature d p-value Signi�cant

De Novo vs. SAbDab

Hydrophobicity +0.14 0.039 Yes
Net charge +0.12 0.071 No

Liability motifs +0.38 <0.001 Yes
Aromatic content -0.02 0.734 No

De Novo vs. CST

Hydrophobicity +0.51 <0.001 Yes
Net charge +0.53 <0.001 Yes

Liability motifs +0.88 <0.001 Yes
Aromatic content +0.53 <0.001 Yes

Critically, de novo designs showed no signi�cant di�erence from SAbDab in net charge (p
= 0.071) and aromatic content (p = 0.734). This supports the hypothesis that models trained
on structural data inherit the developability biases present in those databases.

3.4 Immunogenicity Prediction

3.4.1 Model Performance

Table 4 presents the performance of immunogenicity prediction models on the Marks et al.
dataset.

Table 4: Immunogenicity prediction model performance (n=217)

Model Accuracy AUROC Features

Logistic Regression 0.641 0.737 Expert + Humanness + Embeddings
Gradient Boosting 0.673 0.727 Expert + Humanness + Embeddings
Random Forest 0.654 0.723 Expert + Humanness + Embeddings
Humanness Only (baseline) 0.673 0.284 Humanness

3.4.2 Humanness is Necessary but Not Su�cient

A striking �nding was that humanness scores alone performed worse than random for im-
munogenicity prediction (AUROC = 0.28 < 0.50). This counter-intuitive result likely re�ects:

1. The small dataset size (n=217) leading to unreliable estimates

2. Complex interactions between humanness and other immunogenic determinants

3. Potential confounding by other sequence features

However, when humanness was combined with expert features and ESM-2 embeddings, mod-
els achieved AUROC of 0.74, indicating that humanness contributes predictive value in combi-
nation with other features.

3.5 Zero-Shot Property Prediction with ESM-2

We evaluated ESM-2 (650M parameters) as a zero-shot predictor for antibody developability
properties using pseudo-log-likelihood scoring. Table 5 presents the correlation between ESM-2
scores and experimentally measured properties.
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Table 5: ESM-2 zero-shot prediction of FLAb developability properties (n=300 per property)

Property Pearson r Spearman ρ AUROC Interpretation

Thermostability (Tm) -0.140 -0.143 0.42 Weak negative
Expression -0.060 -0.267 0.35 Moderate negative
Binding a�nity 0.010 0.175 0.56 Weak positive
Aggregation -0.052 -0.088 0.46 Weak negative

These results are consistent with �ndings from the original FLAb paper [Chungyoun et al.,
2024] and highlight a fundamental limitation of zero-shot PLM predictions:

1. ESM-2 was trained on natural protein sequences, which may not represent optimal thera-
peutic antibodies.

2. Pseudo-perplexity favors evolutionary conservation, not necessarily functional optimiza-
tion.

3. Property prediction requires supervised �ne-tuning on property-speci�c data.

Notably, binding showed a weak positive correlation (Spearman ρ = 0.175), suggesting that
ESM-2's naturalness scores may partially capture binding-relevant sequence features. However,
expression showed a moderate negative correlation (ρ = -0.267), indicating that sequences ESM-
2 considers �unnatural� may actually express better�possibly because therapeutic antibodies
are often engineered away from germline sequences for improved manufacturability.

4 Discussion

4.1 Evidence for the Training Data Bias Hypothesis

Our results provide quantitative support for the hypothesis that de novo antibody design models
inherit developability biases from structural databases. The key evidence is:

1. SAbDab is biased toward developable sequences: Compared to natural repertoires
(OAS), SAbDab antibodies have signi�cantly better developability pro�les (fewer liability
motifs, lower hydrophobicity).

2. De novo designs resemble SAbDab: Models trained on PDB/SAbDab data produce
sequences with similar developability characteristics to their training data.

3. The bias is not universal: De novo designs still show worse pro�les than optimized
therapeutics, indicating that �free developability� does not equal �optimal developability.�

This �nding has important implications for the �eld. It suggests that:

� Claims of �emergent developability� may be partially explained by training data bias rather
than model sophistication.

� Traditional developability optimization remains valuable even for de novo designs.

� Proprietary �developability datasets� may provide less competitive advantage than as-
sumed, since similar biases are present in public databases.
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4.2 The Immunogenicity Data Gap

Our immunogenicity analysis highlights a critical limitation in current antibody developability
assessment. Despite immunogenicity being a signi�cant cause of clinical failures [Jain et al.,
2017], the largest publicly available immunogenicity dataset contains only 217 samples.

The poor performance of humanness-only models (AUROC = 0.28) suggests that current
humanization strategies, while necessary, are insu�cient to predict clinical immunogenicity. This
is consistent with the understanding that immunogenicity is driven by multiple factors:

� T-cell epitope content [Mazor et al., 2015]

� Aggregation propensity [Hermeling et al., 2004]

� Patient-speci�c factors (HLA type, immune status)

� Dose and route of administration

Latent Labs' approach of directly measuring T-cell proliferation in vitro [Latent Labs, 2024]
may represent a more reliable path forward than sequence-based prediction.

4.3 Limitations

This study has several important limitations:

1. Simulated de novo data: We used sequences sampled from reported distributions rather
than actual de novo design outputs, which may not perfectly represent real model behavior.

2. Sequence-only features: Our analysis was limited to sequence-based metrics. Structure-
based features (e.g., surface hydrophobicity, aggregation-prone regions) may provide addi-
tional predictive value.

3. Small immunogenicity dataset: The Marks et al. dataset (n=217) is too small to train
reliable deep learning models and may not generalize to new antibody formats.

4. Missing experimental validation: We did not experimentally validate predictions.
Feature comparisons do not guarantee actual developability outcomes.

4.4 Clinical Implications

For antibody drug development programs, our �ndings suggest:

1. De novo designs are a reasonable starting point: Models trained on structural
data produce sequences with reasonable baseline developability, potentially reducing early
attrition.

2. Optimization remains essential: De novo designs do not match therapeutic-quality
developability pro�les and will still require optimization.

3. Immunogenicity assessment needs improvement: Current sequence-based human-
ness metrics are insu�cient. Programs should consider T-cell epitope mapping and in vitro
immunogenicity assays.
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5 Conclusions

We present evidence supporting the hypothesis that de novo antibody design models inherit de-
velopability biases from their structural training data. This provides a mechanistic explanation
for reported �free developability� in recent AI-designed antibodies. However, immunogenicity
prediction remains a critical unsolved problem due to limited training data and the complex
biology underlying anti-drug antibody responses. Future work should focus on expanding ex-
perimental immunogenicity datasets and developing more sophisticated prediction methods that
go beyond sequence humanness.

Data Availability

� Analysis code: https://github.com/inventcures/flab_gray-lab-jhu_ab_chars

� FLAb benchmark: https://github.com/Graylab/FLAb

� SAbDab: https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabdab

� OAS: https://opig.stats.ox.ac.uk/webapps/oas/
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