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Abstract

The field of computational antibody design has undergone a paradigm shift with the emer-
gence of generative artificial intelligence platforms capable of designing therapeutic anti-
bodies de novo. This comprehensive analysis examines five leading approaches: JAM-2
from Nabla Bio, Chai-2 from Chai Discovery, Origin-1 from AbSci, RFAntibody from
the Baker Lab, and Latent-X2 from Latent Labs. We systematically compare their ar-
chitectures, training methodologies, target selection strategies, and experimental validation
results. JAM-2 demonstrates the highest reported hit rates (39% for VHH-Fc). Chai-2
achieves remarkable structural accuracy (<1.7 Å RMSD) and first-in-class functional GPCR
agonist design. Origin-1 addresses the challenging “zero-prior” epitope problem. RFAnti-
body provides atomic-level precision validated by cryo-EM with full open-source availabil-
ity. Latent-X2 introduces three critical advances: (1) the first-ever immunogenicity data
on AI-designed antibodies (10 human donors, ex vivo), (2) the highest design efficiency
(4–24 designs per target), and (3) macrocyclic peptide design capability that matches or
exceeds trillion-compound mRNA display libraries. Special emphasis is placed on oncology
applications and clinical translation readiness. This analysis provides a framework for un-
derstanding the current landscape and future directions of AI-driven antibody therapeutics.

Keywords: de novo antibody design, generative AI, diffusion models, therapeutic antibod-
ies, oncology, immunogenicity, macrocyclic peptides, structure prediction

1



Contents
1 Introduction 4

2 Antibody Biology Primer 4
2.1 Antibody Structure and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Structural Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Complementarity-Determining Regions (CDRs) . . . . . . . . . . . . . . . 5

2.2 Alternative Antibody Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Macrocyclic Peptides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Architectural Approaches 6
3.1 Overview of Design Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 JAM-2: Joint Atomic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Chai-2: All-Atom Foundation Model . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Origin-1: Zero-Prior Epitope Targeting . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 RFAntibody: Diffusion-Based Backbone Generation . . . . . . . . . . . . . . . . 8
3.6 Latent-X2: All-Atom Frontier Model . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Performance Metrics and Validation 9
4.1 Hit Rate Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Binding Affinity Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Design Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Structural Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Developability Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Immunogenicity Assessment 11
5.1 Context: Why Immunogenicity Matters . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 Critical Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.5 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Beyond Antibodies: Macrocyclic Peptide Design 13
6.1 Why Macrocycles Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Traditional Macrocycle Discovery: mRNA Display . . . . . . . . . . . . . . . . . 13
6.3 Latent-X2 vs. mRNA Display: Head-to-Head Comparison . . . . . . . . . . . . . 13
6.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Oncology Applications 14
7.1 Comprehensive Oncology Target Table with OpenTargets Annotations . . . . . . 14
7.2 KRAS Targeting: Two Approaches Compared . . . . . . . . . . . . . . . . . . . . 15
7.3 GPCR Targets in Oncology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8 Clinical Translation Readiness 16

9 Comparative Analysis 17
9.1 Strengths and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9.2 Platform Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2



10 Discussion 17
10.1 Convergent Themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10.2 Novel Contributions from Latent-X2 . . . . . . . . . . . . . . . . . . . . . . . . . 18
10.3 Implications for Drug Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
10.4 Limitations and Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

11 Conclusions 18

3



1 Introduction
Therapeutic antibodies represent one of the most successful classes of biopharmaceuticals, with
over 100 approved products generating annual revenues exceeding $200 billion [Kaplon et al.,
2024]. Traditionally, antibody discovery has relied on immunization campaigns, phage display,
or hybridoma technology—approaches that are time-consuming, expensive, and often converge
on limited epitope diversity [Bradbury et al., 2011].

The emergence of deep learning has fundamentally transformed protein structure prediction,
exemplified by AlphaFold2’s breakthrough in the CASP14 competition [Jumper et al., 2021].
This success has catalyzed efforts to extend these capabilities from structure prediction to
structure generation, enabling the computational design of proteins with novel functions [Watson
et al., 2023].

In 2024-2026, five distinct platforms have emerged as leading approaches for de novo anti-
body design:

1. JAM-2 (Joint Atomic Modeling) from Nabla Bio: A general-purpose design system achiev-
ing double-digit hit rates across diverse targets [Nabla Bio, 2025].

2. Chai-2 from Chai Discovery: An all-atom foundation model demonstrating atomically ac-
curate predictions and functional GPCR agonist design [Chai Discovery, 2025].

3. Origin-1 from AbSci: A platform specifically targeting “zero-prior” epitopes lacking struc-
tural precedent [AbSci, 2026].

4. RFAntibody from the Baker Lab: An RFdiffusion-based approach with cryo-EM-validated
atomic precision [Bennett et al., 2025].

5. Latent-X2 from Latent Labs: A frontier model with first-ever immunogenicity data and
macrocyclic peptide capability [Latent Labs, 2025].

This review provides a systematic comparison of these platforms across multiple dimensions:
architectural design, training methodology, target selection strategy, performance metrics, im-
munogenicity assessment, and oncology applications.

2 Antibody Biology Primer
Before examining computational design approaches, we provide an overview of antibody struc-
ture, function, and traditional discovery methods. This context is essential for understanding
both the challenges these AI platforms address and the metrics by which they are evaluated.

2.1 Antibody Structure and Function

Antibodies (immunoglobulins) are Y-shaped glycoproteins produced by B cells as part of the
adaptive immune response. Their primary function is to recognize and bind specific molecular
targets (antigens) with high affinity and specificity, thereby neutralizing pathogens or marking
them for destruction by other immune cells.
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Figure 1: Immunoglobulin G (IgG) structure. The canonical antibody consists of two
heavy chains (H, red dashed) and two light chains (L, blue dotted) arranged in a Y-shape.
The Fab regions contain the variable domains responsible for antigen binding, with specificity
determined by the complementarity-determining regions (CDRs, green). The Fc region mediates
effector functions including complement activation and Fc receptor binding. Glycosylation sites
(gray) in the Fc region influence pharmacokinetics and effector function.

2.1.1 Structural Hierarchy

The IgG antibody (the dominant therapeutic format) comprises:

• Heavy Chains (H): Two identical ∼450 amino acid chains, each containing one variable
domain (VH) and three constant domains (CH1, CH2, CH3).

• Light Chains (L): Two identical ∼220 amino acid chains, each containing one variable
domain (VL) and one constant domain (CL). Either kappa (κ) or lambda (λ) type.

• Disulfide Bonds: Inter-chain disulfides link H-H and H-L chains; intra-chain disulfides
stabilize immunoglobulin domains.

• Hinge Region: Flexible linker between Fab and Fc, enabling bivalent binding to spatially
separated epitopes.

2.1.2 Complementarity-Determining Regions (CDRs)

The antigen-binding site (paratope) is formed by six hypervariable loops—three from VH
(HCDR1, HCDR2, HCDR3) and three from VL (LCDR1, LCDR2, LCDR3). These CDRs
determine binding specificity:

Table 1: CDR characteristics and their roles in antigen recognition.

CDR Length Range Variability Role in Binding

HCDR1 5–7 aa Moderate Often contacts antigen; canonical struc-
tures

HCDR2 16–19 aa Moderate Broad antigen contact; some canonical
structures

HCDR3 3–30+ aa Highest Primary specificity determinant; no
canonical structures

LCDR1 10–17 aa Moderate Antigen contact; canonical structures
LCDR2 7 aa Low Limited antigen contact
LCDR3 7–11 aa Moderate Antigen contact; canonical structures
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HCDR3 is of particular importance for computational design: it is the most variable in
both length and sequence, lacks predictable canonical structures, and typically makes the most
extensive contacts with the antigen. Accurate modeling and design of HCDR3 represents a key
challenge for all platforms reviewed here.

2.2 Alternative Antibody Formats

Beyond conventional IgG, several alternative formats are relevant to computational design:

Table 2: Antibody formats and their characteristics.

Format Size (kDa) Chains Valency Key Features

IgG (mAb) ∼150 4 (2H + 2L) Bivalent Full effector function; long
half-life

Fab ∼50 2 (H + L) Monovalent No Fc; shorter half-life
scFv ∼25 1 (linked) Monovalent Single-chain; bacterial ex-

pression
VHH (Nanobody) ∼15 1 Monovalent Camelid-derived; high stabil-

ity
VHH-Fc ∼80 2 Bivalent Nanobody + Fc; combines

advantages

VHH (Nanobodies): Derived from camelid heavy-chain-only antibodies, VHHs consist of
a single variable domain (∼110 amino acids). Their advantages include:
• Small size enabling tissue penetration and access to cryptic epitopes
• High thermostability and solubility
• Amenable to bacterial expression (no glycosylation required)
• Extended HCDR3 loops can penetrate concave epitopes (e.g., enzyme active sites)

JAM-2, Chai-2, and Latent-X2 all demonstrate strong performance in VHH/VHH-Fc for-
mats, which may reflect the reduced complexity of single-domain design.

2.3 Macrocyclic Peptides

Beyond antibodies, macrocyclic peptides represent an emerging modality for targeting intra-
cellular proteins:

• Size: Typically 6–20 amino acids cyclized via backbone or side-chain linkages

• Advantages: Cell permeability, access to intracellular targets, oral bioavailability potential

• Traditional discovery: mRNA display (RaPID) screens >1012 compounds over months

• AI approach: Latent-X2 designs macrocycles using the same architecture as antibodies

3 Architectural Approaches

3.1 Overview of Design Paradigms

The five platforms represent distinct architectural philosophies for antibody generation, as il-
lustrated in Figure 2.
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Figure 2: Schematic comparison of the five de novo antibody design pipelines. Each platform
takes different input specifications and employs distinct generative architectures. Latent-X2 is
unique in generating both antibody fragments and macrocyclic peptides from a unified archi-
tecture.

3.2 JAM-2: Joint Atomic Modeling

JAM-2 represents Nabla Bio’s second-generation antibody design system. The system operates
as a general-purpose de novo designer capable of generating both VHH-Fc and full-length mAb
formats.

Key Architectural Features:

• Zero-shot design capability without target-specific training

• Complete CDR generation (IMGT definition) plus adjacent framework residues

• Generates ranked design sets (typically 45 designs per target per format)

• Design cycle completion in 2–3 days computationally

The system outputs novel sequences with >95% having RMSD >10 Å to the closest structure
in SAbDab, demonstrating genuine novelty.

3.3 Chai-2: All-Atom Foundation Model

Chai-2 builds upon Chai-1, Chai Discovery’s multimodal foundation model that demonstrated
competitive performance with AlphaFold3 on structure prediction benchmarks.

Key Architectural Features:
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• All-atom resolution modeling (not just backbone)

• Atomic-level reasoning about binding interfaces

• Direct full-length IgG format design

• Framework selection using well-characterized VH3-23 and VH3-66 germlines

3.4 Origin-1: Zero-Prior Epitope Targeting

Origin-1 addresses a specific challenge: targeting epitopes that lack any structural precedent
from antibody-antigen or protein-protein complexes.

Platform Components:

1. AbsciDiff : All-atom structure generation via diffusion, fine-tuned from Boltz-1

2. IgDesign2: GNN encoder + causal transformer decoder for sequence design

3. AbsciBind: Modified AlphaFold-Multimer scoring protocol for design selection

3.5 RFAntibody: Diffusion-Based Backbone Generation

RFAntibody extends the RFdiffusion framework with antibody-specific fine-tuning and a multi-
stage pipeline.

Pipeline Components:

1. RFdiffusion (fine-tuned): Backbone generation with framework conditioning

2. ProteinMPNN: CDR sequence design with fixed framework sequences

3. RoseTTAFold2 (fine-tuned): Structure prediction and filtering

A distinguishing feature is the MIT license, making it the only fully open-source option.

3.6 Latent-X2: All-Atom Frontier Model

Latent-X2 from Latent Labs represents the newest entrant with several distinctive capabilities.
Key Architectural Features:

• All-atom generative model for joint sequence-structure generation

• Zero-shot design across VHH, scFv, and macrocyclic peptides

• Epitope conditioning with optional framework specification

• Multi-modality without task-specific fine-tuning

• Highest design efficiency reported (4–24 designs per target)

Unique Capabilities:

• First immunogenicity testing: Ex vivo T-cell assays in human donor panels

• Macrocycle design: Same architecture generates peptide macrocycles

• Ultra-high efficiency: 4–24 designs per target vs. 45–9,000+ for other platforms
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4 Performance Metrics and Validation

4.1 Hit Rate Comparison

Hit rate—the percentage of computational designs that yield experimental binders—represents
the primary metric of design efficacy.
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Figure 3: Hit rates across antibody formats and target categories. Values represent approximate
averages where multiple targets were tested. Zero indicates format/category not tested or no
hits reported. Latent-X2 macrocycle hit rate represents average of PHD2 (90%) and K-Ras
G12D (80%) campaigns.

4.2 Binding Affinity Comparison

Table 3: Best reported binding affinities across platforms.

Platform Target Best KD Format

JAM-2 TrkA <100 pM VHH-Fc (avid)
JAM-2 CXCR4 1.4 nM VHH-Fc
JAM-2 VEGFR2 3.3 nM VHH-Fc

Chai-2 CCR8 453 pM VHH-Fc
Chai-2 KRAS G12V pMHC 1.5 nM IgG

Origin-1 IL36RN 89 nM mAb (optimized)

RFAntibody VEGFR2 1.4 nM scFv
RFAntibody PHOX2B pMHC 400 nM scFv

Latent-X2 HDAC8 26.2 pM scFv
Latent-X2 1433B 2.75 nM VHH
Latent-X2 PHD2 (macrocycle) 1.54 nM Macrocycle
Latent-X2 K-Ras G12D 5.43 µM Macrocycle
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Latent-X2’s 26.2 pM affinity against HDAC8 represents the tightest binding reported by any
de novo antibody design platform to date.

4.3 Design Efficiency
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Figure 4: Design efficiency landscape. Latent-X2 occupies the upper-left “sweet spot” with the
highest hit rate (50% target-level) and fewest designs required (4–24 per target). The dashed
line represents an idealized efficiency frontier.

4.4 Structural Validation

Cryo-electron microscopy provides the gold standard for validating computational predictions.
Table 4 summarizes structural validation results.

Table 4: Cryo-EM structural validation across platforms.

Platform Complex Resolution Global RMSD Interface RMSD

Chai-2

S1433B 2.9 Å 0.41 Å 0.54 Å
CSF1 3.3 Å — 1.9 Å
EFNA5 3.9 Å 1.7 Å —
IL20 3.3 Å — —
EPCR 3.5 Å — —

Origin-1 COL6A3 3.0 Å 2.56 Å 0.96 Å
AZGP1 3.1 Å 1.79 Å 1.35 Å

RFAntibody

Influenza HA 3.0 Å 1.45 Å —
TcdB-scFv6 3.6 Å 0.9 Å —
TcdB-VHH 4.6 Å — —
SARS-CoV-2 RBD* 3.9 Å Failed Failed

JAM-2 — No cryo-EM reported

Latent-X2 — No cryo-EM reported
*Design failure: correct epitope but incorrect binding mode.

Note: The absence of cryo-EM validation for Latent-X2 represents a significant gap in

10



structural characterization. While binding affinities are well-documented, atomic-level struc-
tural confirmation of the designed binding modes remains pending.

4.5 Developability Assessment

Drug-like properties are essential for therapeutic development.
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Figure 5: Developability pass rates for JAM-2, Chai-2, and Latent-X2. Origin-1 and RFAnti-
body reported limited developability data. Latent-X2 reports 47% pass all 4 metrics but 80%
pass 3/4 metrics. All platforms use thermostability threshold of >60◦C.

5 Immunogenicity Assessment
This section presents the first-ever immunogenicity data on AI-designed antibodies.

5.1 Context: Why Immunogenicity Matters

Immunogenicity—the potential for a therapeutic protein to elicit an immune response—is a
leading cause of clinical failure for biologic drugs:

• Anti-drug antibodies (ADAs) can neutralize therapeutic efficacy

• Altered pharmacokinetics: Accelerated clearance reduces exposure

• Safety concerns: Anaphylaxis, infusion reactions, cross-reactivity

• Clinical attrition: Multiple candidates have failed in late-stage trials due to immunogenic-
ity

Prior to Latent-X2, no AI-designed antibody had been assessed for immunogenic potential.

5.2 Study Design

Latent-X2 conducted ex vivo immunogenicity testing:
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Table 5: Latent-X2 immunogenicity study design.

Parameter Details

Target TNFSF9 (4-1BB ligand)
Test articles 4 AI-designed VHH binders
Control Caplacizumab (approved VHH therapeutic)
Donor panel 10 healthy human donors
Cell type Peripheral blood mononuclear cells (PBMCs)
Timepoints 48 hours, 120 hours
Assays T-cell proliferation, cytokine release (6 cytokines)

5.3 Results

Table 6: Immunogenicity results for Latent-X2 VHH designs.

Readout AI-Designed VHHs Caplacizumab Positive Control

T-cell proliferation (48h) No increase No increase Increased
T-cell proliferation (120h) No increase No increase Increased
IFN-γ Not elevated Not elevated Elevated
IL-6 Not elevated Not elevated Elevated
IL-10 Not elevated Not elevated Elevated
IL-16 Not elevated Not elevated Elevated
TNF-α Not elevated Not elevated Elevated

Key Finding: All four AI-designed VHHs showed immunogenic profiles comparable to the
FDA-approved therapeutic caplacizumab.

5.4 Critical Limitations
Scientific Caveats

The following limitations must be considered when interpreting these results:

1. Ex vivo only: These are not in vivo animal studies or clinical trials

2. Small donor panel: 10 donors may miss rare responders (clinical trials use larger
panels)

3. Single target: Results from TNFSF9 binders may not generalize to other targets

4. No ADA testing: Anti-drug antibody formation was not assessed

5. Short timepoints: Chronic dosing effects not evaluated

6. Technical note: IL-8 occasionally exceeded detection limits

Animal studies and clinical trials remain necessary before any conclusions
about clinical safety.

5.5 Significance

Despite the limitations, this represents a meaningful milestone:

• First systematic assessment of AI-designed antibody immunogenicity
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• Results are reassuring (comparable to approved drug) rather than concerning

• Establishes a methodology for future immunogenicity screening

• Addresses a key investor/regulatory question: “Has anyone even checked?”

6 Beyond Antibodies: Macrocyclic Peptide Design
Latent-X2 is unique among the platforms reviewed in its ability to design macrocyclic peptides
using the same generative architecture as antibodies.

6.1 Why Macrocycles Matter

• Intracellular access: Unlike antibodies, macrocycles can penetrate cell membranes

• Challenging targets: Protein-protein interactions, transcription factors, “undruggable”
oncoproteins

• KRAS: The most frequently mutated oncogene, intracellular, historically undruggable

6.2 Traditional Macrocycle Discovery: mRNA Display

The RaPID (Random non-standard Peptides Integrated Discovery) system represents the state-
of-the-art:

• Library size: >1012 unique sequences

• Timeline: Several months for a typical campaign

• Requires specialized expertise and facilities

• Has generated multiple clinical candidates

6.3 Latent-X2 vs. mRNA Display: Head-to-Head Comparison

Table 7: Macrocycle design: Latent-X2 vs. RaPID mRNA display.

Metric Latent-X2 RaPID mRNA Display Fold Difference

PHD2 (EGLN1) Target
Library/designs tested 10 >1012 1011× fewer
Hit rate 90% ∼0.000002% —
Best KD 1.54 nM 729 nM 470× better

K-Ras G12D Target
Library/designs tested 10 >1012 1011× fewer
Hit rate 80% ∼0.0000005% —
Best KD 5.43 µM 5.53 µM Comparable
GTP-state selectivity Yes Yes —

6.4 Implications

1. 11 orders of magnitude reduction in experimental search space

2. Comparable or superior affinities with computational design

3. Timeline compression from months to weeks
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4. Modality flexibility: Same platform designs antibodies AND macrocycles

This suggests AI-driven macrocycle design may transform discovery for intracellular targets
similarly to how AI is transforming antibody discovery for extracellular targets.

7 Oncology Applications
Oncology represents the primary application domain for de novo antibody design, encompassing
traditional targets and emerging modalities.

7.1 Comprehensive Oncology Target Table with OpenTargets Annotations

Table 8: Oncology Targets: Platform Performance with OpenTargets Disease Associations.

Target Platform Affinity Disease
Assoc.

Drugs Clinical Context

Immune Checkpoints
PD-L1 JAM-2 Low nM 1,996 13 Pembrolizumab, dur-

valumab, atezolizumab
approved

Receptor Tyrosine Kinases
VEGFR2 JAM-2 3.3 nM 1,397 69 Ramucirumab approved;

validated target
TrkA JAM-2 <100 pM 1,244 12 Larotrectinib tumor-

agnostic approval
FGFR1 Chai-2 — 1,653 18 Futibatinib approved for

cholangiocarcinoma

Oncology GPCRs
CXCR4 JAM-2 1.4 nM 1,500 8 Metastasis driver; plerix-

afor approved
CXCR4 Chai-2 164 nM* 1,500 8 First computational

GPCR agonist
CCR8 Chai-2 453 pM 259 0 Tumor Treg marker; first-

in-class opportunity
GPRC5D Chai-2 189 nM 91 1 Talquetamab approved

Aug 2023 (myeloma)

Neoepitopes / pMHC
KRAS
G12V

Chai-2 1.5 nM 1,801 12 Single-residue specificity;
TCR-mimetic

TP53
R175H

Chai-2 — 3,277 5 Most mutated tumor sup-
pressor

PHOX2B RFAntibody400 nM — 0 Neuroblastoma driver

Latent-X2 Oncology Targets (NEW)
HDAC8 Latent-

X2
26.2 pM 353 355 Epigenetic regulator; neu-

roblastoma, AML
PHD2/EGLN1Latent-

X2
1.54 nM† 362 29 Hypoxia regulator; HIF

pathway

Continued on next page
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Table 8 – continued
Target Platform Affinity Disease

Assoc.
Drugs Clinical Context

MMP2 Latent-
X2

77 nM 1,744 9 Metastasis; extracellular
matrix

K-Ras
G12D

Latent-
X2

5.43 µM† 1,801 12 Most common KRAS mu-
tation; direct binding

TNFSF9 Latent-
X2

31.1 nM 209 0 Immuno-oncology; im-
munogenicity tested

OSM Latent-
X2

3.26 µM 478 0 Tumor microenvironment;
IL-6 family

Zero-Prior Targets
FOLR1 Origin-1 — 402 3 Mirvetuximab soravtan-

sine approved 2022
IL36RN Origin-1 89 nM 245 0 Tumor microenvironment

modulation

*EC50 for agonist activity. †Macrocyclic peptide format. Disease associations and drug counts from Open-
Targets Platform (January 2026).

7.2 KRAS Targeting: Two Approaches Compared

KRAS mutations are present in ∼25% of all human cancers. Two platforms have demonstrated
KRAS targeting through distinct mechanisms:

Table 9: KRAS targeting comparison: Chai-2 vs. Latent-X2.

Aspect Chai-2 Latent-X2

Mutation targeted G12V G12D
Modality IgG antibody Macrocyclic peptide
Mechanism pMHC-targeting (TCR-mimetic) Direct protein binding
Presentation HLA-A*03:01 N/A (intracellular)
Best affinity 1.5 nM 5.43 µM
Hit rate 4% (2/50) 80% (8/10)
Specificity WT/G12D discrimination GTP-state selective
Cellular access Extracellular (pMHC) Potentially intracellular

These complementary approaches illustrate how AI platforms are tackling the KRAS prob-
lem from multiple angles.

7.3 GPCR Targets in Oncology

G protein-coupled receptors represent historically “undruggable” targets with significant oncol-
ogy relevance.
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Table 10: GPCR targeting across platforms with oncology relevance.

Target Platform Hit Rate Best KD Oncology Relevance

GPRC5D Chai-2 48% 189 nM Multiple myeloma (talque-
tamab)

CXCR4 JAM-2 11.7% 1.4 nM Metastasis, tumor microenvi-
ronment

CXCR4 Chai-2 11% 164 nM* First functional GPCR ago-
nist

CCR8 Chai-2 50% 453 pM Tumor-infiltrating Tregs; 0
approved

*EC50 for partial agonist activity.

Note: Latent-X2 has not demonstrated GPCR targeting capability.

8 Clinical Translation Readiness

Table 11: Clinical translation readiness across platforms.

Milestone JAM-2 Chai-2 Origin-1 RFAntibody Latent-X2

In vitro binding ✓ ✓ ✓ ✓ ✓
Developability ✓ ✓ Partial Limited ✓
Cryo-EM validation Limited ✓ (5) ✓ (2) ✓ (4) None
Functional activity Partial ✓ ✓ Partial Not reported
Ex vivo immunogenicity None None None None ✓ (10 donors)
In vivo efficacy None None None None None
IND-enabling studies None None None None None

Key observations:

• No platform has demonstrated in vivo efficacy or completed IND-enabling studies

• Latent-X2 is the only platform with immunogenicity data, but lacks structural validation

• Chai-2 has the most comprehensive structural validation (5 cryo-EM structures)

• The field collectively requires animal studies to progress toward clinical translation
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9 Comparative Analysis

9.1 Strengths and Limitations

Table 12: Comparative strengths and limitations of each platform.

Platform Key Strengths Limitations

JAM-2
• Highest hit rates (39% VHH-Fc)
• Comprehensive developability (57% pass all 4)
• GPCR orthosteric targeting
• Large-scale validation (923+ designs)

• Architecture not disclosed
• No pMHC targeting demonstrated
• Proprietary/not available
• No cryo-EM validation

Chai-2
• Atomic accuracy (<1 Å HCDR3)
• First functional GPCR agonists
• Single-residue pMHC discrimination
• Best structural validation (5 cryo-EM)

• Not publicly available
• Lower hit rates than JAM-2
• No immunogenicity data

Origin-1 • Zero-prior epitope capability
• All-atom diffusion generation
• Functional antagonist design

• Lower hit rates (4/10 targets)
• Initial µM affinities
• Requires optimization

RFAntibody
• Open-source (MIT license)
• Atomic precision validated
• Reproducible

• Low hit rates (0-2%)
• Requires 9,000+ designs
• Design failures occur

Latent-X2 • First immunogenicity data
• Highest efficiency (4–24 designs)
• Best affinity (26.2 pM)
• Macrocycle capability
• Multi-modality from single architecture

• No cryo-EM validation
• Immunogenicity ex vivo only
• Single target for immunogenicity
• No GPCR targeting shown
• Not open source

9.2 Platform Selection Guide

Table 13: Platform selection based on use case.

Use Case Recommended Rationale

GPCR targeting JAM-2, Chai-2 Demonstrated success with functional
activity

pMHC / neoepitope Chai-2 Single-residue discrimination validated
Zero-prior epitopes Origin-1 Specialized capability
Academic / open source RFAntibody MIT license, reproducible
Fastest iteration Latent-X2 4–24 designs per target
Immunogenicity priority Latent-X2 Only platform with data
Intracellular targets Latent-X2 Macrocycle capability
Structural validation required Chai-2 Most cryo-EM structures

10 Discussion

10.1 Convergent Themes

Despite distinct architectural approaches, several convergent themes emerge:

1. Diffusion/generative models as foundation: Four of five platforms employ generative
approaches.

2. All-atom modeling: Moving beyond backbone-only to all-atom resolution appears critical.

3. Epitope conditioning: Explicit epitope specification enables targeted interface design.
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4. Efficiency improvements: Design counts have dropped from 9,000+ to as few as 4–24.

10.2 Novel Contributions from Latent-X2

Latent-X2 introduces three advances not seen in prior platforms:

1. Immunogenicity testing: First systematic assessment, even if limited to ex vivo

2. Design efficiency: 4–24 designs per target represents >100× improvement over RFAnti-
body

3. Modality flexibility: Same architecture for antibodies and macrocycles

However, the absence of structural validation (cryo-EM) represents a significant gap that
should be addressed in future work.

10.3 Implications for Drug Discovery

The demonstrated capabilities have significant implications:

1. Timeline compression: Traditional 12–24 months reduced to 4–8 week cycles.

2. Target expansion: GPCRs, pMHCs, and intracellular targets now accessible.

3. Epitope control: Systematic epitope coverage from the outset.

4. Early immunogenicity screening: May become standard practice.

5. Modality choice: Antibody vs. macrocycle can be a design parameter.

10.4 Limitations and Gaps

Critical gaps remain across the field:

• In vivo validation: No platform has demonstrated in vivo efficacy or PK.

• Clinical immunogenicity: Ex vivo data does not predict clinical outcomes.

• Manufacturing: Large-scale production unvalidated.

• Reproducibility: Most platforms not publicly available.

• IND pathway: No candidates have entered formal regulatory development.

11 Conclusions
The emergence of JAM-2, Chai-2, Origin-1, RFAntibody, and Latent-X2 marks a transformative
moment in antibody therapeutics:

1. Five platforms now demonstrate practical de novo antibody design capability.

2. Hit rates of 15–50% are achievable, representing 10–100× improvements over early meth-
ods.

3. Drug-like affinities (picomolar to single-digit nanomolar) achievable without optimization.

4. Challenging targets—GPCRs, pMHC neoepitopes, intracellular proteins—are now acces-
sible.
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5. First immunogenicity data suggests AI-designed antibodies may have acceptable profiles.

6. Macrocycle capability extends AI design beyond antibodies to intracellular targets.

The field is transitioning from “can we design antibodies computationally?” to “how do we
optimally deploy these capabilities and prove they are safe?”

The path to clinical validation remains the critical next step. We anticipate the first IND
applications for AI-designed de novo antibodies within 18–24 months.
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