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Abstract

Medical image segmentation remains a critical bottleneck in clinical workflows, from diagnostic radiology to radiation oncology treatment
planning. We present Onco-Seg, a medical imaging adaptation of Meta’s Segment Anything Model 3 (SAM3) that leverages promptable
concept segmentation for automated tumor and organ delineation across multiple imaging modalities. Unlike previous SAM adaptations limited
to single modalities, Onco-Seg introduces a unified framework supporting CT, MRI, ultrasound, dermoscopy, and endoscopy through modality-
specific preprocessing and parameter-efficient fine-tuning with Low-Rank Adaptation (LoRA). We train on 35 datasets comprising over 98,000
cases across 8 imaging modalities using sequential checkpoint chaining on a 4-GPU distributed training infrastructure. We evaluate Onco-Seg
on 12 benchmark datasets spanning breast, liver, prostate, lung, skin, and gastrointestinal pathologies, achieving strong performance on breast
ultrasound (Dice: 0.752±0.24), polyp segmentation (Dice: 0.714±0.32), and liver CT (Dice: 0.641±0.12). We further propose two clinical
deployment patterns: an interactive “sidecar” for diagnostic radiology and a “silent assistant” for automated radiation oncology contouring. We
release an open-source napari plugin enabling interactive segmentation with DICOM-RT export for radiation oncology workflows. Code and
models are available at https://github.com/inventcures/onco-segment.

Keywords: Medical image segmentation, foundation models, SAM3, deep learning, radiation oncology, multi-modal imaging, LoRA, transfer
learning, distributed training, napari plugin, DICOM-RT

1. Introduction
Medical image segmentation is fundamental to modern clini-
cal practice. Radiologists rely on precise tumor delineation for
diagnosis and treatment response assessment. Radiation on-
cologists require accurate organ-at-risk (OAR) contouring for
treatment planning, where segmentation errors can result in
inadequate tumor coverage or excessive normal tissue irradi-
ation [4]. Despite decades of algorithmic development, man-
ual segmentation remains the clinical standard, consuming sig-
nificant physician time and introducing inter-observer variabil-
ity [5].

The Segment Anything Model (SAM) series has transformed
computer vision by demonstrating that large-scale pretrain-
ing enables zero-shot segmentation across diverse domains.
SAM1 [1] introduced promptable segmentation with points and
boxes. SAM2 [2] extended this to video with memory-based
tracking. SAM3 [3], released in November 2025, represents
a paradigm shift through Promptable Concept Segmentation
(PCS)—the ability to segment all instances of a concept speci-
fied by text or image exemplars.

SAM3’s innovations present unprecedented opportunities for
medical imaging:
1. Text-Based Prompting: Clinicians specify targets using

natural language (“liver tumor,” “left parotid gland”) rather
than manual annotations.

2. Multi-Instance Segmentation: SAM3 identifies all lesions
matching a concept—critical for metastatic disease.

3. Presence Token Architecture: Decouples recognition
from localization, enabling discrimination between similar
concepts.

4. Unified Detector-Tracker Design: Naturally extends to 3D
volumetric data by treating slices as frames.

In this work, we present Onco-Seg, a comprehensive adap-
tation of SAM3 for medical imaging. Our contributions in-
clude: (1) a unified preprocessing pipeline supporting ten imag-
ing modalities; (2) parameter-efficient fine-tuning using LoRA
on SAM3’s 848M parameter architecture; (3) training on 35
datasets with over 98,000 cases using sequential checkpoint
chaining; (4) a detailed multi-GPU distributed training method-
ology with DDP bug fixes; (5) extensive evaluation across 12
benchmark datasets; (6) two clinical deployment patterns for
diagnostic radiology and radiation oncology; and (7) an open-
source napari plugin for interactive clinical use with DICOM-
RT export.

2. Methods
2.1 Problem Definition
Given a medical image volume V ∈ RH×W×D and a clinical
prompt P (text, bounding box, or point), we seek a segmenta-
tion mask M ∈ {0,1}H×W×D that accurately delineates all tar-
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Figure 1: Onco-Seg system architecture overview. Medical images undergo modality-specific preprocessing before being processed by
SAM3’s frozen perception encoder (800M parameters). LoRA adaptation is applied to query-key-value and projection layers, resulting in
only 42M trainable parameters (5% of total). The system supports box, point, and text prompts for interactive segmentation.

get structure instances. Key challenges include: domain gap
between medical and natural images, volumetric consistency
across slices, extreme class imbalance (<1% lesion pixels), and
multi-modal heterogeneity.

2.2 Onco-Seg Architecture
Onco-Seg builds upon SAM3’s three-component architecture
sharing a unified 848M-parameter vision backbone:

Vision Encoder: A hierarchical vision transformer (Hiera)
processing images at 1008×1008 resolution (72 patches of 14
pixels each).

Detector (DETR-based): For single-image segmentation
with presence token prediction, enabling concept discrimina-
tion before localization.

Tracker (Memory-based): Inherited from SAM2 for prop-
agation across frames/slices with self-sorting memory.

2.3 Modality-Specific Preprocessing
We implement ten dedicated normalization transforms, each
outputting to SAM3’s expected range via final SAM3 normal-
ization (x− 0.5)/0.5 → [−1,1]. Figure 2 illustrates the com-

plete preprocessing pipeline.
• CT (NormalizeCT): Hounsfield unit windowing [-1000,

1000], linear scaling to [0,1]
• MRI (NormalizeMRI): Percentile clipping (1st–99th),

channel-wise for multi-modal inputs
• Ultrasound (NormalizeUltrasound): Speckle-robust 2nd–

98th percentile clipping
• Dermoscopy (NormalizeDermoscopy): Per-channel RGB

percentile (1st–99th)
• Endoscopy (NormalizeEndoscopy): Per-channel RGB,

5th–95th percentile bounds
• X-Ray (NormalizeXRay): Wide dynamic range compres-

sion, 1st–99th percentile
• PET (NormalizePET): NaN handling for SUV data, per-

centile clipping
• Mammogram (NormalizeMammo): Percentile-based for

variable exposure settings
• CXR (NormalizeCXR): Chest X-ray specific normalization
• SRH (NormalizeSRH): Log transform for Stimulated Ra-

man Histology dynamic range
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Figure 2: Multi-modality preprocessing pipeline. Each modality undergoes specific intensity normalization before final SAM3 normalization
to [-1, 1]. The SelectMedicalChannels transform handles multi-channel inputs (e.g., 4-channel BraTS MRI → 3 channels).

2.3.1 Multi-Channel MRI Handling
For multi-channel MRI data such as BraTS (FLAIR, T1w,
T1gd, T2w), we implement SelectMedicalChannels to re-
duce 4 channels to SAM3’s expected 3:

Listing 1: Channel selection for BraTS MRI

# BraTS channel indices: FLAIR=0, T1w=1, T1gd=2,

T2w=3

# Selected: [T1w , T1gd , FLAIR] for optimal tumor

contrast

indices = [1, 2, 0] # t1_t1gd_flair mode

output = input[indices [:3]] # -> 3 channels

For 2-channel inputs (e.g., OpenSRH with Lipids, Proteins),
we replicate the protein channel to achieve 3-channel output.

2.4 Parameter-Efficient Fine-Tuning
We employ Low-Rank Adaptation (LoRA) [6] on attention lay-
ers. Figure 3 details our SAM3 adaptation strategy.

W ′ =W +BA (1)

where B ∈ Rd×r, A ∈ Rr×k with r ≪ min(d,k). Our specific
LoRA configuration:

Listing 2: LoRA configuration

LoraConfig(

r=16, # Rank

lora_alpha =32, # Alpha = 2*r

target_modules =["qkv", "proj"],

lora_dropout =0.1,

bias="none"

)

The perception encoder (800M parameters) remains frozen
while LoRA adapts only attention layers, resulting in ∼42M
trainable parameters (5% of total).

2.4.1 DDP Device Placement Fix
SAM3’s decoder caches coordinate tensors (coord_cache,
compilable_cord_cache) on the first forward pass. In DDP
training, this causes device mismatch errors when ranks 1–3
attempt to use coordinates cached on rank 0’s device. We im-
plement a monkey-patch for _get_rpb_matrix:

Listing 3: DDP device placement fix

def patched_get_rpb_matrix(self , *args , ** kwargs)

:

target_device = args [0]. device # Get from

input

if self.compilable_cord_cache is not None:

cached_h , cached_w = self.

compilable_cord_cache

if cached_h.device != target_device:

self.compilable_cord_cache = (

cached_h.to(target_device),

cached_w.to(target_device)

)

return original_method(self , *args , ** kwargs)

2.4.2 Grounding Stability
SAM3’s forward_grounding path may call self.matcher
even without targets. We inject a dummy matcher to prevent
crashes:

Listing 4: Dummy matcher injection

base_model.matcher = lambda outputs , targets: []
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Figure 3: SAM3 to Onco-Seg adaptation details. Left: Original SAM3 components including frozen perception encoder. Right: Onco-Seg
modifications including LoRA configuration, DDP device placement fix, grounding stability injection, and modality-aware loss functions.

2.5 Data Loading and Prompt Generation
Figure 4 illustrates the end-to-end data flow from NIfTI vol-
umes to SAM3 input.

2.5.1 Foreground-Biased Sampling
To address class imbalance during training, we implement
foreground-biased slice sampling with 80% probability of se-
lecting slices containing ground truth segmentation, and 20%
random selection for robustness to empty inputs.

2.5.2 BraTS Region Handling
For BraTS glioma data, we extract three clinically-relevant re-
gions:

Listing 5: BraTS region extraction

def get_brats_region(label , region_type):

if region_type == "WT": # Whole Tumor

return (label > 0).astype(np.uint8)

elif region_type == "TC": # Tumor Core

return ((label == 1) | (label == 4))

else: # ET - Enhancing Tumor

return (label == 4).astype(np.uint8)

Region types are cycled deterministically by sample index
(idx % 3) to ensure balanced training across all regions.

2.6 Loss Function
We use combined Dice-Focal loss with modality-specific
weighting:

L = λdiceLdice +λfocalLfocal (2)

Table 1: Loss Function Configuration by Modality

Modality Type λdice λfocal γ

Standard (CT, MRI) 1.0 1.0 2.0
Extreme Imbalance 0.5 1.5 3.0

Extreme imbalance modalities include Mammography, Der-
moscopy, Endoscopy, and Ultrasound where lesions typically
occupy <5% of image pixels.

3. Distributed Training Infrastructure
Figure 5 illustrates our distributed training setup.

3.1 Hardware Configuration
Training was conducted on RunPod cloud infrastructure us-
ing a 4× NVIDIA RTX 4090 GPU pod, providing 96GB total
VRAM. Table 2 summarizes the hardware specifications.
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Figure 4: End-to-end data flow from NIfTI medical volumes to SAM3 segmentation output. The pipeline includes MONAI spatial transforms,
modality-specific normalization, foreground-biased slice extraction (80% probability of selecting slices with ground truth), and automatic
prompt generation from segmentation masks.

Table 2: Training Hardware Specification

Component Specification

GPU 4× NVIDIA RTX 4090
VRAM per GPU 24 GB GDDR6X
Total VRAM 96 GB
CPU AMD EPYC 7543 (32 cores)
System RAM 256 GB DDR4
Storage 2 TB NVMe SSD
Interconnect PCIe 4.0 x16
Provider RunPod Secure Cloud

3.2 Distributed Data Parallel (DDP) Strategy
We employ PyTorch Lightning’s Distributed Data Parallel
(DDP) strategy for multi-GPU training. Figure 6 illustrates our
distributed training architecture.

Key configuration decisions:
Strategy Selection: We use

ddp_find_unused_parameters_true to handle SAM3’s
complex architecture where not all parameters receive gradi-
ents on every forward pass (e.g., presence token head vs. mask
decoder).

Gradient Synchronization: NCCL backend for GPU-to-
GPU communication, synchronized at each backward pass
across all 4 GPUs.

Memory Optimization: 16-bit mixed precision (AMP) re-
duces memory footprint by ∼40%, enabling 1008×1008 input
resolution within 24GB VRAM per GPU.

3.3 Training Loop Implementation
The training loop follows PyTorch Lightning’s
LightningModule pattern:
1. Forward Pass: Process batch through Onco-Seg model, ex-

Table 3: DDP Training Configuration

Parameter Value

Strategy DDP (find_unused_params=True)
Backend NCCL
Batch Size 1 per GPU
Gradient Accumulation 4 steps
Effective Batch Size 16
Precision 16-mixed (AMP)
Image Size 1008×1008
Workers per GPU 4
Pin Memory True
Persistent Workers True

tract predicted masks from SAM3Output structure
2. Loss Computation: Combined Dice-Focal loss with

modality-specific weighting
3. Backward Pass: Automatic differentiation with gradient

scaling (AMP)
4. Gradient Sync: NCCL all-reduce across 4 GPUs
5. Optimizer Step: AdamW update after gradient accumula-

tion
6. Validation: Compute Dice/IoU metrics on held-out split

3.4 Optimizer and Scheduler
• Optimizer: AdamW with β1 = 0.9, β2 = 0.999, weight de-

cay 0.05
• Learning Rate: 1×10−4 (base)
• Scheduler: CosineAnnealingWarmRestarts with T0 = 5,

Tmult = 2
• Early Stopping: Patience of 10 epochs on validation Dice
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Figure 5: Distributed training infrastructure on 4× RTX 4090 GPUs. Each GPU processes batch size 1 with gradient accumulation of 4 steps,
achieving effective batch size of 16. NCCL backend synchronizes gradients across all devices. AdamW optimizer with CosineAnnealing-
WarmRestarts scheduler manages learning rate.

Figure 6: Distributed Data Parallel (DDP) training architecture on
4× RTX 4090 GPUs. Each GPU processes independent batches with
synchronized gradient updates via NCCL backend.

3.5 Checkpoint Management
We implement a robust checkpoint management system for
continual learning:

Crash Recovery: If training is interrupted mid-task, full
state (model weights, optimizer state, epoch counter, scheduler
state) is restored.

Cross-Task Transfer: When transitioning to a new task,
only model weights are loaded; optimizer and scheduler reset
to enable fresh optimization dynamics while preserving learned
representations.

Disk Management: Intermediate checkpoints are deleted
after task completion, retaining only last.ckpt. Final check-
points are pushed to Weights & Biases as artifacts.

4. Training Pipeline
4.1 Dataset Inventory
Onco-Seg was trained on 35 datasets across 8 phases, totaling
over 98,000 training cases spanning 8 imaging modalities. Ta-
ble 4 summarizes the training corpus by phase.

4.2 Sequential Checkpoint Chaining
Training proceeds sequentially with checkpoint chaining to
maximize knowledge transfer while preventing catastrophic
forgetting:
1. Phase B (MSD): Establishes CT/MRI foundation on Medi-

cal Segmentation Decathlon [8] (10 tasks)
2. Phase C (BraTS): Adds brain tumor expertise with multi-

region segmentation (WT, TC, ET)
3. Phase E1 (Breast): Introduces breast MRI and mammog-

raphy
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Table 4: Training Datasets by Phase

Phase Datasets Cases Modality

B (MSD) 10 tasks 1,741 CT/MRI
C (BraTS) 3 tasks 1,410 MRI
D (OpenSRH) 1 task 250 SRH
E1 (Breast) 2 tasks 3,714 MRI/Mammo
E2 (Multi-Organ) 3 tasks 38,053 CT
E3 (CXR) 5 tasks 32,001 X-ray
F1 (High-Impact) 4 tasks 3,483 CT/MRI/PET
F2 (Modality) 4 tasks 12,697 Multi
F3 (Specialized) 3 tasks 4,805 US/XR/CT

Total 35 98,154 8 modalities

4. Phase E3 (CXR): Transfers X-ray modality leveraging
mammogram expertise

5. Phase F1–F3: Expands to oncology-critical sites and new
modalities

4.3 Training Dynamics: BraTS Case Study
We present detailed training dynamics for the BraTS-GLI
(adult glioma) task, which demonstrates the model’s learning
behavior on challenging multi-region brain tumor segmenta-
tion. Training was conducted on 1,251 volumes for 30 epochs.
Figures 7 and 8 show the training progression at epochs 10, 20,
and 30 (final).

Table 5: BraTS-GLI Training Progress

Epoch Step Loss DiceWT DiceTC DiceET

10 230 0.66 0.78 0.30 0.36
20 460 0.58 0.84 0.36 0.40
30 700 0.48 0.85 0.38 0.42

WT=Whole Tumor, TC=Tumor Core, ET=Enhancing Tumor

Key Observations:
• Volume Hierarchy: Performance follows expected volume

hierarchy: WT (0.85) ≫ ET (0.42) > TC (0.38), reflecting
that whole tumor (largest region) is easiest while tumor core
(smallest) is hardest

• Rapid Warm-up (Epochs 1–10): Loss decreases sharply
from 0.85 to 0.66; all Dice scores climb rapidly

• Acceleration (Epochs 10–20): Fastest Dice improvement;
validation loss reaches minimum

• Plateau Onset (Epochs 20+): Large structures (WT) satu-
rate; small structures (TC, ET) continue slow improvement

• Overfitting Signal: Slight validation loss uptick after epoch
20 indicates early overfitting, controlled by early stopping

4.4 Training Dynamics: MSD Liver Case Study
Figure 9 shows training dynamics for the MSD Liver task (131
CT volumes, 30 epochs), demonstrating CT-based organ seg-
mentation learning behavior.

4.5 Modality-Specific Training Epochs
Training epochs are calibrated based on dataset size to balance
convergence and compute:

Table 6: Epoch Calibration by Dataset Size

Dataset Size Examples Epochs

Small (<50 cases) Heart, Prostate, BraTS-SSA 50
Medium (50–200) BrainTumour, Liver, Lung 30
Large (200–1000) Hippocampus, LIDC-IDRI 15–20
Very Large (>1000) TotalSegmentator, VinDr-CXR 15

4.6 Experiment Tracking
All training runs are logged to Weights & Biases with phase-
specific project routing:
• onco_seg_phaseB: MSD baseline
• onco_seg_brats_phaseC: Brain tumors
• onco_seg_breast_phaseE1: Breast cancer
• onco_seg_cxr_phaseE3: Chest X-ray
• onco_seg_highimpact_phaseF1: High-impact oncology

5. Evaluation Results
5.1 Complete Results
Table 7 presents evaluation results across 12 benchmark
datasets spanning 5 imaging modalities and 6 anatomical re-
gions.

Table 7: Onco-Seg Evaluation Results (12 Datasets)

Dataset Modality Dice IoU

BUSI US 0.752±0.24 0.653±0.26
Hyper-Kvasir Endo 0.714±0.32 0.637±0.33
Kvasir-SEG Endo 0.714±0.32 0.637±0.33
ISIC 2018 Derm 0.680±0.28 0.572±0.28
LiTS CT 0.641±0.12 0.554±0.13
3D-IRCADb CT 0.621±0.10 0.535±0.11
PROMISE12 MRI 0.495±0.15 0.393±0.16
MSD Colon CT 0.330±0.32 0.249±0.27
BTCV CT 0.303±0.10 0.204±0.08
LNDb CT 0.264±0.15 0.219±0.13
MSD Pancreas CT 0.239±0.32 0.186±0.28
AutoPET-III PET-CT 0.215±0.15 0.152±0.13

US=Ultrasound, Endo=Endoscopy, Derm=Dermoscopy

5.2 Performance Tiers
5.2.1 Strong Performance (Dice > 0.65)
BUSI Breast Ultrasound (0.752): Best overall performance.
Analysis of 647 images reveals category-dependent perfor-
mance: benign tumors achieve Dice 0.807 while malignant tu-
mors achieve 0.638. The performance gap reflects the irregu-
lar, spiculated boundaries characteristic of malignant lesions,
which are inherently more difficult to delineate with high inter-
observer agreement even among expert radiologists [5].
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(a) Epoch 10 (1/3) (b) Epoch 20 (2/3) (c) Epoch 30 (Final)

Figure 7: BraTS-GLI training and validation loss progression. Orange: training loss; Blue: validation loss. Loss decreases rapidly in early
epochs, then plateaus with slight overfitting signal after epoch 20.

(a) Epoch 10 (1/3) (b) Epoch 20 (2/3) (c) Epoch 30 (Final)

Figure 8: BraTS-GLI validation Dice scores by tumor region. Teal: Whole Tumor (WT); Yellow: Tumor Core (TC); Pink: Enhancing Tumor
(ET). Performance follows volume hierarchy: WT (largest) converges fastest, TC/ET (smaller regions) improve gradually.

Kvasir-SEG/Hyper-Kvasir (0.714): Strong polyp segmen-
tation across 2,000 total endoscopy images, competitive with
specialized colonoscopy models.

ISIC 2018 (0.680): Good skin lesion delineation across
2,594 dermoscopy images.

LiTS/3D-IRCADb (0.64/0.62): Consistent liver segmenta-
tion across two independent CT datasets demonstrates robust
cross-dataset generalization.

5.2.2 Moderate Performance (Dice 0.30–0.50)
PROMISE12 (0.495): Prostate MRI segmentation is challeng-
ing due to variable MRI sequences and field strengths across
institutions.

MSD Colon (0.330): Colon cancer primaries exhibit high
variability in size, shape, and contrast enhancement patterns.

5.2.3 Challenging Cases (Dice < 0.30)
BTCV (0.303), LNDb (0.264), MSD Pancreas (0.239),
AutoPET-III (0.215): These datasets present known chal-
lenges: BTCV requires multi-class segmentation of 13 organs;
LNDb targets lung nodules (median 6mm diameter); MSD Pan-
creas targets a low-contrast organ with high anatomical vari-
ability; AutoPET-III requires PET-CT fusion for metabolically
active lesion detection. These represent areas requiring further
model development.

5.3 Comparison to Prior Work
• LiTS liver: Onco-Seg (0.641) vs nnU-Net [7] (∼0.70)

trained specifically on LiTS
• Polyp segmentation: Onco-Seg (0.714) matches specialized

colonoscopy models
• ISIC skin: Onco-Seg (0.680) is competitive with ISIC 2018

challenge baselines
The key advantage is that Onco-Seg achieves this across all

modalities with a single unified model.

6. Clinical Deployment
6.1 Pattern A: Interactive Sidecar (Diagnostic Radiology)
Architecture:

PACS → OHIF Viewer → FastAPI + Triton → Instant Mask

Workflow: Radiologist single-clicks on suspected le-
sion; Onco-Seg returns segmentation in <500ms with auto-
computed diameter and volume.

Clinical utility: Reduces manual measurement time for RE-
CIST (Response Evaluation Criteria in Solid Tumors) assess-
ments in oncology follow-up imaging.

6.2 Pattern B: Silent Assistant (Radiation Oncology)
Architecture:

CT Scanner → AI Node → Onco-Seg + Atlas → RTSTRUCT → TPS

Workflow: CT simulation triggers automatic 30+ OAR seg-
mentation (2–5 min); DICOM-RT Structure Set generated for
treatment planning system.

Clinical utility: Initial auto-contours require physician re-
view and editing; efficiency gains depend on segmentation ac-
curacy and clinical workflow integration.
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(a) Epoch 10 (1/3) (b) Epoch 20 (2/3) (c) Epoch 30 (Final)

Figure 9: MSD Liver training progression showing loss and Dice metrics. CT-based liver segmentation demonstrates stable convergence with
validation Dice reaching 0.64 by epoch 30.

7. napari Plugin for Interactive Segmentation
To facilitate clinical deployment and research use, we devel-
oped napari-oncoseg, an open-source napari plugin available
at https://github.com/inventcures/onco-segment/

tree/main/napari_plugin.

7.1 Plugin Architecture
The plugin implements a Qt-based widget integrating with na-
pari’s layer system:
• OncoSegWidget: Main interface providing model loading,

modality selection, and segmentation controls
• OncoSegModel: Wrapper around the trained checkpoint en-

abling point and box prompt inference
• Preprocessing module: Modality-specific normalization

matching training transforms

7.2 Features
7.2.1 Interactive Prompting
Users provide prompts through napari’s layer system:
• Point prompts: Click on target structure; coordinates passed

to SAM3’s point encoder
• Box prompts: Draw rectangle around target; bounding box

coordinates passed to SAM3’s box encoder
• Text prompts: Future functionality; current implementation

supports point and box prompts

7.2.2 Multi-Modality Support
The plugin includes modality selection with automatic prepro-
cessing:

Table 8: Supported Imaging Modalities in napari Plugin

Modality Preprocessing

CT HU windowing [-1000, 1000]
MRI Percentile normalization (1st–99th)
Ultrasound Speckle-robust (2nd–98th)
Dermoscopy Per-channel RGB
Endoscopy Per-channel RGB (5th–95th)
PET SUV normalization with NaN handling
X-Ray/CXR Wide dynamic range compression
Mammography Percentile-based

An auto-detect mode analyzes image statistics (intensity

range, histogram shape) to suggest appropriate modality pre-
processing.

7.2.3 3D Volume Propagation
For volumetric data, the plugin provides slice-by-slice propa-
gation:
1. User segments one slice interactively
2. Plugin extracts mask centroid as seed point
3. Automatic propagation runs inference on remaining slices

using centroid-derived prompts
4. Progress bar indicates completion status

This enables full-volume segmentation with a single click on
a representative slice.

7.2.4 Export Formats
The plugin supports two export formats aligned with clinical
workflows:

NIfTI (.nii.gz): Standard neuroimaging format preserving
3D structure with affine transformation matrix. Compatible
with ITK-SNAP, 3D Slicer, and FSL.

DICOM-RT Structure Set: For radiation oncology in-
tegration. Requires source DICOM series for geometric
reference. Uses rt-utils library [12] to generate compliant
RTSTRUCT files importable by treatment planning systems
(Eclipse, RayStation, Monaco).

7.3 Installation

Listing 6: napari plugin installation

# Clone repository

git clone https :// github.com/inventcures/onco -

segment.git

cd onco -segment/napari_plugin

# Install with dependencies

pip install -e ".[dev]"

# Launch napari

napari

# Plugins > OncoSeg

7.4 Checkpoint Management
The plugin downloads pre-trained checkpoints from Hugging-
Face Hub:

Users can also load custom checkpoints via file browser.

https://github.com/inventcures/onco-segment/tree/main/napari_plugin
https://github.com/inventcures/onco-segment/tree/main/napari_plugin
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Table 9: Available Checkpoints

Name Training Data Best For

latest All phases (F3) General purpose
breast Duke-Breast-Cancer-MRI Breast lesions
liver MSD Task03 Liver/hepatic tumors
brain BraTS-GLI Brain tumors

8. Discussion
8.1 Key Findings
Onco-Seg demonstrates that SAM3’s promptable concept seg-
mentation transfers effectively to medical imaging across mul-
tiple modalities. The unified preprocessing framework enables
a single model to handle CT, MRI, ultrasound, dermoscopy,
and endoscopy.

Strengths:
1. Multi-modal generalization with shared weights
2. Clinical workflow alignment via point and box prompting
3. Both interactive and automated deployment patterns
4. Comprehensive training on 98,000+ cases across 35 datasets
5. Open-source napari plugin for accessible clinical evaluation

Limitations:
1. Performance degrades for lesions <10mm diameter
2. PET imaging requires dedicated training
3. Multi-class segmentation (BTCV) remains challenging
4. Text prompting not yet implemented in napari plugin

8.2 Clinical Considerations
The napari plugin provides an accessible interface for clinical
evaluation. Several considerations apply to clinical use:
1. Validation requirement: All auto-generated contours re-

quire physician review and editing before clinical use. Au-
tomated segmentation should augment, not replace, clinical
judgment.

2. Device registration: DICOM-RT export preserves source
image geometry but requires verification against treatment
planning system import to ensure spatial accuracy.

3. Regulatory status: Onco-Seg is a research tool not cleared
for clinical use. Clinical deployment would require insti-
tutional review board approval, prospective validation stud-
ies, and potentially regulatory clearance (FDA 510(k) or CE
marking).

4. Population generalization: Training data demographics
may not represent all patient populations. Performance
should be validated on local institutional data before clin-
ical integration.

5. Edge cases: Atypical presentations, rare pathologies, and
cases with imaging artifacts may produce unreliable seg-
mentations requiring manual correction.

8.3 Future Directions
Short-Term: Integrate uncertainty quantification; develop 3D
Slicer plugin; implement text prompting in napari.

Medium-Term: Multi-center clinical validation; federated

learning across institutions.
Long-Term: Foundation model for all medical segmenta-

tion; FDA 510(k) regulatory pathway.

9. Code and Data Availability
Source code, trained model checkpoints, and the napari plugin
are available at:
• Repository: https://github.com/inventcures/

onco-segment

• napari plugin: onco-segment/napari_plugin/
• Checkpoints: HuggingFace Hub (tp53/onco-seg)
• Project page: https://inventcures.github.io/

onco-seg/

Training datasets are publicly available from their respective
sources (Medical Segmentation Decathlon, BraTS, LiTS, ISIC,
Kvasir-SEG, TCIA).
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