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Abstract

De novo computational antibody design has emerged as a transformative approach to therapeutic
discovery, yet its systematic application to the cancers with greatest unmet need remains limited. Here
we present a complete computational study designing VHH nanobodies against ten challenging cancer
targets spanning five indications: MPNST, DIPG/DMG, neuroblastoma, glioblastoma, and pancreatic
ductal adenocarcinoma. Through systematic analysis of 43 target—indication pairs, we identify 10
structurally actionable targets and introduce a four-tier structural readiness classification revealing that
only 50% of evaluated targets possess antibody—antigen co-crystal structures. Using rfab-harness, an
open-source campaign orchestration tool wrapping the three-stage RFAntibody pipeline, we executed all
ten campaigns in parallel on NVIDIA A100-80GB GPUs via Modal cloud infrastructure. The pipeline
generated 817 backbone scaffolds via RFdiffusion, expanded them to 4,085 sequenced designs through
ProteinMPNN, and scored all designs using RoseTTAFold2 structure prediction. Applying stringent
quality filters (pAE < 10, CDR RMSD < 2.0A), 135 designs (3.3%) passed across all campaigns, with
per-target pass rates varying from 0.3% (EGFRvIII, HER2 Domain IV) to 19.8% (CEACAMS5). The
best candidates achieved predicted aligned errors as low as 2.19 A and CDR backbone RMSDs of 0.68 A,
indicating high structural confidence. CEACAMS5, CD47, B7-H3, and mesothelin emerged as the most
computationally tractable targets, while EGFRvIII and GPC2 exhibited the greatest design difficulty.
All code, configurations, results, and analysis are openly available, establishing a reproducible framework
for translating computational protein design into therapeutic antibody candidates for intractable cancers.
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1 Introduction

The past two years have witnessed a paradigm
shift in antibody discovery. Where traditional ap-
proaches required immunization campaigns lasting
months followed by extensive screening of 10-10°
clones, de novo computational platforms can now
generate antibody candidates in silico in hours.
Bennett, Watson et al. demonstrated that RFAn-
tibody, a three-stage pipeline combining RFdiffu-
sion for backbone generation, ProteinMPNN for se-
quence design, and RoseTTAFold2 for structure pre-
diction, can generate binders with affinities reach-

ing the picomolar range, though per-target exper-
imental success rates ranged from 0-2% [1]. Con-
currently, proprietary platforms including Absci’s
generative antibody design platform and Chai Dis-
covery’s Chai-2 have reported de novo antibody
design capabilities [2, 3].

Despite these advances, the application of de
novo design to the cancers with the greatest un-
met need has been remarkably limited. The origi-
nal RFAntibody demonstration targeted influenza
hemagglutinin, Clostridioides difficile toxin B, res-
piratory syncytial virus, a PHOX2B neoantigen,
and the SARS-CoV-2 receptor binding domain—



none of which represent the cancers responsible for
the most intractable mortality burden. Five indi-
cations stand out for their combination of devas-
tating clinical outcomes and near-complete absence
of effective antibody therapeutics: MPNST (5-year
survival ~15% when metastatic, no approved anti-
body therapy), DIPG/DMG (median survival ~11
months, universally fatal in children), high-risk neu-
roblastoma (~50% survival despite aggressive mul-
timodal treatment), glioblastoma (median survival
~15 months, no antibody therapy improving overall
survival), and pancreatic ductal adenocarcinoma
(5-year survival ~12%, third leading cause of cancer
death).

Each of these indications presents unique bio-
logical challenges for antibody therapy. CNS tu-
mors (DIPG, GBM) are shielded by the blood-brain
barrier, which permits less than 0.1% of systemi-
cally administered IgG (~150kDa) to reach the
tumor parenchyma [4]. Pancreatic cancer generates
a dense desmoplastic stroma comprising up to 80%
of tumor mass, severely limiting antibody diffusion
[5]. MPNST is driven primarily by intracellular loss-
of-function events (NF1, SUZ12/EED), creating a
paucity of druggable surface antigens. Neuroblas-
toma’s most validated target, GD2, is a ganglioside
rather than a protein, precluding standard compu-
tational design approaches.

These challenges motivate two central questions
that this work addresses. First, which surface anti-
gens across these five indications have sufficient
structural data and clinical rationale to justify com-
putational antibody design campaigns? Second, can
the de novo design process be systematized into a
reproducible, scalable framework that enables re-
searchers to go from target selection to designed
candidates with minimal manual intervention?

To answer these questions, we conducted a sys-
tematic analysis of 43 target—indication pairs, devel-
oped a four-tier structural readiness classification,
built rfab-harness (an open-source campaign orches-
tration tool), and executed all ten design campaigns
in parallel on cloud GPU infrastructure. We pro-
vide complete results including score distributions,
filtering outcomes, ranked candidate lists, and cross-
campaign comparisons for all ten targets.

2 Methods

2.1 Target Identification and Prioritiza-
tion

Target identification employed three complementary
data sources queried between January and February
2026.

Open Targets Platform. Disease—target as-
sociations were retrieved via the Open Targets
GraphQL API (release 25.02) for each indication
using established ontology identifiers: MPNST
(EFO_0000760), DIPG (EFO_1000026), DMG
(EFO__0020983), neuroblastoma (EFO_0000621),
GBM (EFO__0000519), and PDAC (EFO__0000232)
[8]. Targets were ranked by overall association
score (0-1 scale integrating genetic, somatic, drug,
literature, and animal model evidence). The top
50 targets per indication were screened for surface
accessibility and antibody-targetable extracellular
domains.

RCSB Protein Data Bank. For each can-
didate target, the PDB was queried for (1) any
deposited structure of the extracellular domain and
(2) antibody—antigen co-crystal or cryo-EM complex
structures. Structures were evaluated by resolution,
completeness of the extracellular domain, and pres-
ence of defined antibody—antigen interfaces.

Clinical trial registries and literature. Clini-
calTrials.gov, PubMed (2022-2026), and conference
proceedings from ASCO 2024-2025, AACR 2025,
and ASH 2024 were searched for antibody-based
therapies targeting each candidate.

2.2 Structural Readiness Classification

We developed a four-tier classification to assess the
feasibility of structure-guided de novo antibody de-
sign for each target. Tier 1 (Excellent) requires
multiple antibody—antigen complex structures at
<3 A resolution with well-defined epitopes. Tier 2
(Good) requires at least one antibody—antigen com-
plex structure. Tier 3 (Limited) indicates that
a target extracellular domain structure exists but
no antibody complex, requiring epitope inference.
Tier 4 (Insufficient) indicates no usable extracellu-
lar domain structure, or that the target is a non-
protein antigen. Only Tier 1 and Tier 2 targets were
considered suitable for immediate de novo design
campaigns.



2.3 Epitope and Hotspot Derivation

For each campaign target, epitope residues were
defined as target residues with any heavy atom
within 4.5A of an antibody heavy atom in the
reference complex structure. Hotspot residues
(3-5 per target) were selected from the epitope
set based on three criteria: (1) high buried sur-
face area upon complex formation, (2) hydropho-
bic or aromatic character (Phe, Trp, Tyr, Leu,
Ile, Val preferred), and (3) spatial centrality
within the epitope patch. For well-characterized
targets (EGFR/cetuximab, HER2/trastuzumab,
CDA47/magrolimab), published epitope definitions
were used directly. For newer structures (9JLME for
B7-H3, 8UKV for EGFRvIII, 6WJL for GPC2), in-
terface contacts were computed using BioPython’s
NeighborSearch algorithm.

2.4 Antibody Format Selection

VHH nanobody format (~15kDa, single-domain)
was selected for all 10 campaigns based on three
considerations: (1) improved blood-brain barrier
penetration relative to full IgG (~150kDa) for CNS
tumor targets [7], (2) enhanced stromal penetration
for pancreatic cancer targets, and (3) compatibility
with the RFAntibody pipeline, which has demon-
strated successful VHH design with the NbBCII10
framework template.

2.5 Campaign Configuration

Each campaign was defined by a YAML configu-
ration file specifying the target PDB, epitope and
hotspot residues, antibody format (VHH), frame-
work (NbBCII10), CDR loop length ranges, pipeline
parameters, and filtering thresholds. CDR H3 loop
lengths were set to ranges of 7-15 residues for most
targets, with adjusted ranges for targets requiring
longer paratope reach (CEACAMS5: 10-18, GPC2:
10-18, EphA2: 8-15). CDR H1 and H2 lengths were
fixed at 7 and 6 residues, respectively, consistent
with the NbBCII10 framework germline.

2.6 Computational Pipeline

The three-stage RFAntibody pipeline was orches-
trated by rfab-harness, a custom Python pack-
age that manages subprocess execution, stage-level

checkpoint persistence, and Quiver-format (.qv) I/O
between stages.

Stage 1: RFdiffusion. The SE3-equivariant
diffusion model generated backbone designs using
50 diffusion timesteps with the RFdiffusion_Ab.pt
weights. Input conditioning included the target
epitope structure, hotspot residue positions, CDR
loop length ranges, and the NbBCII10 framework
in HLT format.

Stage 2: ProteinMPNN. The ProteinMPNN
graph neural network designed five amino acid se-
quences per backbone scaffold at a sampling temper-
ature of 0.2, masking framework residues to preserve
the NbBCII10 sequence while allowing full CDR
sequence exploration.

Stage 3: RF2 Structure Prediction.
RoseTTAFold2 independently predicted the three-
dimensional structure of each sequenced design in
complex with the target, using 10 recycling itera-
tions. Predicted structures were evaluated on mul-
tiple metrics: interaction pAE (predicted aligned
error across the antibody—antigen interface), per-
residue pAE, predicted LDDT (local distance dif-
ference test), target-aligned CDR RMSD, target-
aligned antibody RMSD, and framework-aligned
CDR and individual loop RMSDs (H1, H2, H3).

2.7 Filtering and Ranking

Designs were filtered on two primary quality metrics:
predicted aligned error (pAE < 10.0A) and target-
aligned CDR backbone RMSD (< 2.0 A). The RF2
scoring pipeline does not produce Rosetta-based
AAG estimates; accordingly, the binding energy
filter described in some RFAntibody protocols was
not applied. Filtered candidates were ranked by a
composite score:

(1)

where p denotes min-max normalization to [0, 1]
across the filtered candidate set, with the remaining
weight redistributed proportionally. Lower compos-
ite scores indicate higher-confidence candidates.

Scomposite =04- ﬁpAE +0.3- ﬁRMSD

2.8 Compute Infrastructure

All ten campaigns were executed in parallel on
Modal cloud infrastructure, each allocated a single
NVIDIA A100-80GB GPU. Pipeline orchestration,
checkpointing, and result persistence were managed



via Modal Volumes with periodic commits every
10 minutes for fault recovery. Stage 1 backbones
from a prior partial run (targeting 500 designs per
campaign) were preserved and reused via a skip-
stage checkpoint mechanism, with Stages 2 and
3 run fresh against the existing backbone designs.
Total wall-clock time from Stage 24-3 launch to all-
campaigns-complete was approximately 75 minutes.

3 Results

3.1 Landscape of Antibody-Targetable
Antigens

Systematic screening identified 43 target—indication
pairs across the five cancer types (Table 1). The
number of potential targets varied dramatically by
indication: GBM yielded 11 evaluated targets (from
9,906 Open Targets associations), PDAC produced
10, neuroblastoma generated 8, MPNST yielded
7 (reflecting the paucity of validated surface anti-
gens in sarcoma), and pediatric gliomas produced
7 targets.

Table 1: Landscape of evaluated targets per indication.

Table 2: Cross-indication driver targets.
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Target S Q < U R n/5 Tier
B7-H3  #1 #2 #2 #3 4 2
GD2 44 #1 Est. #10 — 4 4
EGFR  #2 #6 — #1 #4 4 1
HER2  #6 — —  #4 #6 3 1

B7-H3 (CD276) is the most striking pan-cancer
target, overexpressed in MPNST (58% of sarcomas),
DIPG (uniformly on tumor cells and vasculature),
neuroblastoma, and GBM, while exhibiting limited
normal tissue expression. B7-H3-directed CAR-T
cells received FDA Breakthrough Therapy Designa-
tion for DIPG in April 2025 following Phase I results
showing median survival of 19.8 months from diag-
nosis [6]. GD2, while appearing in 4/5 indications,
is a ganglioside rather than a protein, excluding it
from computational antibody design workflows.

3.3 Priority Target Selection

Integrating cross-indication impact, structural

readiness, and therapeutic potential, we selected

Targets Tier 1-2 Tier 3 Tier g targets for de novo VHH nanobody design cam-

3 paigns (Table 3).

3.4 Pipeline Execution Summary

Indication

MPNST 7 2 2
DIPG/DMG 7 2 3 2
Neuroblastoma 8 3 3 2
GBM 11 7 2 2
PDAC 10 4 3 3
Total (unique) 28 14 8 6

The structural readiness distribution reveals a
critical bottleneck: only 14 of 28 unique targets
(50%) have any antibody—antigen complex structure
in the PDB.

3.2 Cross-Indication Driver Targets

Three targets emerged as cross-indication drivers
appearing in >4 of 5 indications (Table 2).

Stage 1 (RFdiffusion) generated 53-118 backbone
scaffolds per campaign (817 total), with variation
arising from a prior run that was stopped and
clipped at the available design count. Stage 2 (Pro-
teinMPNN) expanded each backbone into five se-
quenced designs, producing 265-590 sequences per
campaign (4,085 total) in 3.3-3.7 minutes per cam-
paign. Stage 3 (RF2) scored all 4,085 designs in
approximately 75 minutes of wall-clock time across
10 parallel A100 GPUs, with each design requir-
ing ~12 seconds (10 recycling iterations at ~1.2
seconds each). The complete Stage 2+3 execution
consumed approximately 12.5 GPU-hours.



Table 3: Ten priority targets selected for de novo VHH design campaigns with Stage 1 backbone counts and final

filtering results.

# Target Indication(s) PDB Res. BB Seqs Pass Rate
1 B7-H3 GBM, MPNST, DIPG, NB 9LME 24A 82 410 11 2.7%
2 CD47 GBM 5IWL  2.8A 96 480 19 4.0%
3 CEACAMS5 PDAC 8BWO 3.1A 82 410 81 19.8%
4 EGFR GBM, MPNST, PDAC 1IYY9 26A 64 320 5  1.6%
5 EGFRvIII GBM SUKV 29A 73 365 1 0.3%
6 EphA2 GBM 3SKJ 25A 70 350 3 0.9%
7  GPC2 Neuroblastoma 6WJL 3.3A 53 265 2 0.8%
8 HER2 Dom.IV  GBM, MPNST IN8Z 25A 72 360 1 0.3%
9 MSLN (N-term) PDAC 4F3F  26A 107 535 6 1.1%
10 MSLN (C-term) PDAC 7U8C 118 590 6 1.0%

Total 817 4,085 135 3.3%

3.5 Design Funnel and Global Filtering

Design Funnel: 10 Cancer Targets
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Figure 1: Design funnel showing attrition from back-
bone generation through sequence design to filtered can-
didates across all 10 campaigns. The 3.3% overall pass
rate (135/4,085) reflects the stringent dual-threshold
filtering applied.

Of the 4,085 designs scored by RF2, 135 (3.3%)
passed both quality filters (pAE < 10 and CDR
RMSD < 2.0 A; Figure 1). For reference, the origi-

nal RFAntibody study reported per-target exper-
imental binding rates of 0-2% across benchmark
targets [1]; our 3.3% computational pass rate using
purely in silico metrics is not directly comparable
to experimental binding assays, but the same order
of magnitude suggests the filtering thresholds are
appropriately stringent.

3.6 Per-Target Pass Rates

Filter pass rates varied more than 60-fold across
campaigns, from 0.3% (EGFRvIII, HER2 Do-
main IV) to 19.8% (CEACAMS), revealing substan-
tial differences in computational design difficulty
among cancer targets (Figure 2).

Design Filter Pass Rates Across Cancer Targets

B7-H3 11 (2.7%)

CcD47 19 (4.0%)

CEACAMS 81 (19.8%)

EGFR 5 (1.6%)

EGFRvIIl 1(0.3%)
EphA2 3(0.9%)
GPC2 2 (0.8%)
HER2-DIV 1(0.3%)
MSLN-C 6 (1.0%)

MSLN-N 6 (1.1%)

T T T T
10 15 20 25

Filter pass rate (%)
Figure 2: Filter pass rates by target. CEACAMS5 dom-
inates with 81 passing designs (19.8%), while EGFRvIII
and HER2 Domain IV each produced only a single pass-
ing candidate.



The targets clustered into three difficulty tiers
based on pass rate. The high-tractability group
comprised CEACAMS5 (19.8%), which alone con-
tributed 60% of all passing designs. The moderate
group included CD47 (4.0%, 19 designs), B7-H3
(2.7%, 11 designs), EGFR (1.6%, 5 designs), MSLN-
Nterm (1.1%, 6 designs), and MSLN-Cterm (1.0%,
6 designs). The low-tractability group comprised
EphA2 (0.9%, 3 designs), GPC2 (0.8%, 2 designs),
and both EGFRvIII and HER2 Domain IV (0.3%,
1 design each).

3.7 Score Distributions
3.7.1 Predicted Aligned Error (pAE)

The pAE distributions (Figure 3) showed that most
designs across all campaigns exhibited median pAE
values in the 4.9-9.3 range, with the majority of
designs falling above the 10.0 threshold. MSLN-
Nterm (median pAE = 5.23) and MSLN-Cterm
(median pAE = 4.86) exhibited the most favor-
able pAE distributions overall, suggesting that the
mesothelin epitopes are particularly amenable to
high-confidence interface prediction. CD47 (me-
dian pAE = 7.34) also performed well. In contrast,
GPC2 (median pAE = 9.28) and EGFR (median
pAE = 9.01) showed the least favorable pAE distri-
butions, with their medians approaching the filter
threshold.

pAE Score Distributions by Target

12 4 Filter threshold (pAE < 10)

-
o ® o

PAE (predicted aligned error)

IS

Figure 3: Box plots of pAE score distributions across all
10 targets. Red dashed line indicates the filter threshold
(pAE < 10). Lower values indicate higher predicted
structural confidence at the antibody—antigen interface.

3.7.2 CDR RMSD

Target-aligned CDR RMSD distributions (Figure 4)
revealed that the 2.0 A threshold was the more
stringent of the two filters for most campaigns.
HER2 Domain IV exhibited the highest median
CDR RMSD (21.18 A), indicating that the vast ma-
jority of designed CDR conformations deviated sub-
stantially from the target-docked geometry. MSLN-
Cterm (20.41 A) showed a similarly high median.
The low-RMSD tail—designs with CDR RMSDs
below 2.0 A—was most populated for CEACAMS5,
explaining its dominant pass rate. MSLN-Nterm
achieved the lowest median CDR RMSD of 8.40 A
despite its moderate pass rate, suggesting that many
designs achieved partial structural recapitulation
even when not meeting the stringent 2.0 A cutoff.

CDR RMSD Distributions by Target
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Figure 4: Box plots of target-aligned CDR RMSD
distributions. Red dashed line at 2.0 A indicates the
filter threshold. The wide distributions (medians 8-21 A)
demonstrate that CDR structural recapitulation is the
primary bottleneck for design success.

3.7.3 Joint pAE-RMSD Distribution

The joint distribution of pAE and CDR RMSD
across all 4,085 designs (Figure 5) illustrates the
combined effect of both filters. The passing region
(pAE < 10, RMSD < 2.0) occupies the lower-left
quadrant and is sparsely populated, with 135 de-
signs. A notable cluster of designs from multiple
campaigns achieves low pAE (<5) but high RMSD
(>5), indicating correct interface prediction but in-
correct CDR geometry—a failure mode where the
antibody framework is well-positioned but the CDR
loops adopt non-functional conformations.



Joint pAE-RMSD Distribution (all 4,085 designs)
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Figure 5: Joint scatter plot of pAE vs. CDR RMSD for
all 4,085 designs, colored by campaign. The shaded lower-
left quadrant marks the pass region (135 designs, 3.3%).
The dense cluster at low pAE / high RMSD represents
correctly positioned but geometrically deviated CDR
loops.

3.8 Structural Quality Metrics

Beyond the primary filtering metrics, RF2 gener-
ates several additional structural quality indica-
tors. The metric heatmap (Figure 6) compares
five key metrics across all campaigns. Predicted
LDDT values were uniformly high (0.88-0.91), in-
dicating that the global VHH fold quality was well-
preserved across all targets regardless of interface
quality. Framework-aligned H3 RMSD (Figure 7)—
a measure of CDR-H3 loop accuracy independent of
target positioning—showed medians of 1.01-1.63 A
across campaigns. GPC2 (1.01 A) and EGFRvIII
(1.08 A) exhibited the lowest H3 loop deviations,
suggesting that the designed H3 loops are geomet-
rically sound even when the overall target-aligned
RMSD is high.

Structural Quality Metrics Across Targets
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Figure 6: Heatmap of key structural quality metrics
across all 10 campaigns. Values are raw scores; color
scale is normalized per metric (green = better, red =
worse). pLDDT is inverted so that green indicates higher

confidence.

CDR-H3 Loop Accuracy by Target
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Figure 7: Violin plots of framework-aligned CDR-H3
loop RMSD. The consistently low H3 RMSDs (medi-
ans 1.0-1.6 A) indicate that CDR-H3 loop geometry is
well-preserved by the ProteinMPNN-RF2 pipeline, and
that the primary design challenge lies in target-aligned
positioning rather than intrinsic loop accuracy.

3.9 Per-Campaign Detailed Results

3.9.1 CEACAMS5 (PDAC) — 81 passing
designs, 19.8% pass rate

CEACAMS5 was the clear standout campaign,
producing more passing designs than all other
campaigns combined. The best candidate (de-
sign 76_ dldesign_ 2) achieved pAE = 2.59, CDR
RMSD = 0.68 A, interaction pAE = 3.56, and
framework-aligned H3 RMSD = 0.70 A. Twelve de-
signs achieved CDR RMSD below 1.0A, and 81



designs passed both thresholds. The high success
rate may reflect the accessibility of the CEACAMS5
A3B3 domain epitope defined in the tusamitamab
complex (PDB: 8BW0) and the extended CDR H3
range (10-18 residues) allowed for this campaign.
CEACAMS5 is the target of the ADC tusamitamab
ravtansine (SAR408701), which reached Phase II
clinical evaluation in solid tumors including non-
small cell lung cancer [12], validating this epitope
as therapeutically relevant.

3.9.2 CD47 (GBM) — 19 passing designs,
4.0% pass rate

CDA47 produced the second-highest number of pass-
ing designs. The best candidate (design 20_ dlde-
sign 4) achieved pAE = 2.84 and CDR RMSD =
1.05A. The magrolimab epitope on CD47 (PDB:
5IWL) is a well-characterized “don’t eat me” signal
that prevents macrophage-mediated phagocytosis
of tumor cells. Nineteen designs spanning 8 unique
backbone scaffolds passed both filters, suggesting
robust sequence diversity among the hits. The me-
dian pAE of 7.34 across all 480 designs indicates
moderately favorable interface confidence.

3.9.3 B7-H3 (MPNST, DIPG, GBM, NB)
— 11 passing designs, 2.7% pass rate

The pan-cancer target B7-H3 produced 11 pass-
ing designs from 3 unique backbone scaffolds (de-
signs 23, 30, and 68). The best candidate (de-
sign 23_dldesign_3) achieved pAE = 2.20 and
CDR RMSD = 1.10 A, indicating high structural
confidence. The concentration of hits on 3 of 82
backbones suggests that a small subset of scaffold
topologies are particularly well-suited to the B7-H3
epitope defined in the recently deposited 9LME
structure. Given B7-H3’s relevance to four cancer
indications and the FDA Breakthrough designation
for B7-H3 CAR-T in DIPG [6], these 11 candidates
represent high-priority designs for experimental val-
idation.

3.9.4 MSLN-Nterm (PDAC) — 6 passing
designs, 1.1% pass rate

Mesothelin N-terminal domain produced 6 passing
designs, predominantly from 2 backbone scaffolds
(designs 30 and 32). The best candidate (design

32_dldesign_ 2) achieved the lowest pAE of any
design across all campaigns (2.19A) with CDR
RMSD = 1.33 A and interaction pAE = 2.60. The
exceptional pAE distribution of the MSLN-Nterm
campaign (median pAE = 5.23, the second-lowest
across all campaigns) suggests that the amatuximab
epitope (PDB: 4F3F) provides a particularly favor-
able binding interface for VHH design. Combined
with the MSLN-Cterm campaign, the two MSLN
campaigns together produced 12 designs targeting
non-overlapping epitopes, enabling potential bis-
pecific VHH pairing for avidity-enhanced PDAC
therapy.

3.9.5 MSLN-Cterm (PDAC) — 6 passing
designs, 1.0% pass rate

Despite having the highest median CDR RMSD
(20.41 A) across all campaigns, the C-terminal
mesothelin domain produced 6 passing designs, 4
of which originated from a single backbone scaffold
(design 71). The best candidate (design 71 _dlde-
sign_ 2) achieved pAE = 2.92, CDR RMSD =
0.78 A, and the lowest H3 RMSD of any top can-
didate in this study (0.60 A). The concentration of
4 passing designs from one backbone with consis-
tent CDR RMSD values (0.78-0.88 A) strongly sug-
gests that backbone 71 adopts a topology uniquely
complementary to the 15B6 epitope on mesothelin
C-terminus (PDB: 7U8C) [13].

3.9.6 EGFR (GBM, MPNST, PDAC) — 5
passing designs, 1.6% pass rate

EGFR produced 5 passing designs from 4 back-
bone scaffolds. The best candidate (design 19__dlde-
sign_ 2) achieved pAE = 3.32 and CDR RMSD =
1.31 A. Despite EGFR having the richest structural
data of any target in this study (Tier 1 with the
cetuximab complex at 2.6 A), the relatively low pass
rate (1.6%) reflects the large and complex cetux-
imab epitope (30 residues), which requires a VHH
to replicate much of the interface formed by a full
Fab domain. This result suggests that large epitope
footprints may be inherently more challenging for
single-domain VHH design.



3.9.7 EphA2 (GBM) — 3 passing designs,
0.9% pass rate

Three designs passed for the EphA2 receptor tyro-
sine kinase. The best candidate (design 27 dlde-
sign_0) achieved a pAE of 2.52 and CDR RMSD
of 1.53 A. The moderate-to-low pass rate may re-
flect the geometry of the 1C1 Fab epitope (PDB:
3SKJ, 21 residues), which spans a ridge on the
EphA2 ligand-binding domain that is geometrically
challenging for single-domain antibody engagement
[14].

3.9.8 GPC2 (Neuroblastoma) — 2 passing
designs, 0.8% pass rate

Glypican-2 yielded only 2 passing designs, both with
borderline metrics (pAE = 8.28-8.89, CDR RMSD
= 1.82-1.99 A). The high median pAE (9.28) and
high median CDR RMSD (15.23 A) indicate that
the D3 Fab epitope on GPC2 (PDB: 6WJL, reso-
lution 3.3 A) is the most structurally challenging
target in this study. The low template resolution
may contribute to lower prediction confidence. De-
spite the difficulty, the 2 passing designs represent
the first computationally generated VHH candi-
dates against this neuroblastoma-restricted orphan
target [11].

3.9.9 EGFRvIII (GBM) — 1 passing de-
sign, 0.3% pass rate

Only a single design passed for the tumor-specific
EGFRWvVIII deletion variant. This sole candidate
(design 19_dldesign_ 0) exhibited borderline pAE
(8.24) and CDR RMSD (1.82 A), with the highest
interaction pAE (15.14) of any passing design across
all campaigns. The EGFRvIII template (PDB:
S8UKV at 2.9 A) is of moderate resolution, ruling
out template quality as the primary explanation for
design difficulty. The difficulty may arise from the
unique structural features of the EGFRvVIII deletion
junction, which creates a neoepitope formed by the
fusion of residues flanking the exon 2-7 deletion—a
geometrically novel surface that the diffusion model
may have limited training data to model.

3.9.10 HER2 Domain IV (GBM, MPNST)
— 1 passing design, 0.3% pass rate

The membrane-proximal Domain IV of HER2
(trastuzumab epitope) produced a single passing
design (design 16_ dldesign_ 2) with excellent pAE
(2.36) and CDR RMSD (1.67 A). Despite the low
pass rate, this candidate shows strong interface
confidence (interaction pAE = 3.06, pLDDT =
0.92). The extremely high median CDR RMSD
(21.18 A) for this campaign—the highest across all
targets—suggests that the trastuzumab epitope on
Domain IV is particularly challenging for VHH de-
sign, possibly because Domain IV is a small, con-
vex domain that provides limited surface area for
single-domain antibody engagement compared to
the larger epitope footprint exploited by the full
trastuzumab Fab.

3.10 Cross-Campaign Comparison

Global Fold Quality (pLDDT) by Target
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Figure 8: Predicted LDDT distributions by target.
The uniformly high pLDDT values (0.87-0.92) across
all campaigns confirm that the VHH framework fold is
well-preserved regardless of interface quality or target
difficulty.

Several patterns emerged from the cross-campaign
comparison. First, global fold quality (pLDDT) was
remarkably consistent across all targets (medians
0.88-0.91; Figure 8), confirming that the NbBCII10
VHH framework is robustly recapitulated by the
ProteinMPNN-RF2 pipeline regardless of the tar-
get. Second, CDR RMSD was the dominant de-
terminant of pass rate—the correlation between
median CDR RMSD and pass rate was strongly
negative (lower RMSD median, higher pass rate).
Third, pAE and CDR RMSD captured distinct fail-
ure modes: some campaigns (MSLN-Cterm, HER2



Domain IV) had low median pAE but very high
median RMSD, indicating that the interface was cor-
rectly predicted but the CDR geometry was wrong;
other campaigns (GPC2) had high median values
on both metrics.

3.11 Top Candidates

Table 4 summarizes the single best candidate from
each campaign. The three highest-confidence de-
signs are from CEACAMS5 (pAE = 2.59, RMSD
= 0.68 A), MSLN-Nterm (pAE = 2.19, RMSD =
1.33A), and B7-H3 (pAE = 2.20, RMSD = 1.10A).
These candidates represent immediate priorities for
experimental validation via yeast surface display
and surface plasmon resonance.

Table 4: Best candidate per campaign ranked by com-
posite score.

Target PAE RMSD Score Design ID
CEACAM5  2.59 0.68 0.015 76_dI2
MSLN-N 2.19 1.33  0.000 32_dI2
B7-H3 2.20 1.10  0.000 23_dlI3
CDh47 2.84 1.05  0.050 20_dl4
MSLN-C 2.92 0.78 0.000 71_dI2
EphA2 2.52 1.53  0.000 27 _dlo
EGFR 3.32 1.31  0.129 19 dI2
HER2-DIV ~ 2.36 1.67  0.000 16_dI2
GPC2 8.28 1.99 0.429 5_dI2
EGFRvIII 8.24 1.82  0.000 19 dlo

3.12 Backbone Topology and Design
Success

A notable observation is the concentration of pass-
ing designs on a small number of backbone scaffolds.
For B7-H3, 11 passing designs originated from only
3 of 82 backbones (3.7%). For MSLN-Cterm, 4 of 6
passing designs came from a single backbone (design
71). This pattern suggests that backbone topology
is the primary determinant of design success, and
that increasing the number of backbones (rather
than sequences per backbone) would be the most
effective strategy for improving pass rates in future
campaigns (Figure 10).

Backbone Count vs. Design Success Rate
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Figure 10: Relationship between backbone count and
filter pass rate. No strong correlation is observed, in-
dicating that backbone quality (topology) rather than
quantity drives design success.

4 Discussion

4.1 Computational Design Difficulty
Varies Dramatically Across Cancer

Targets

The most striking finding of this study is the 60-
fold range in pass rates across the 10 cancer tar-
gets (0.3% to 19.8%). This variation substantially
exceeds what would be expected from sampling
noise alone and reflects genuine differences in the
tractability of different epitope—antigen pairs for
VHH nanobody design. CEACAMS5’s outlier suc-
cess (19.8%) may be attributable to the geometry
of the tusamitamab epitope on the A3B3 domain,
which presents a relatively concave surface patch
well-suited to single-domain antibody engagement,
combined with the extended H3 loop lengths (10—
18 residues) allowed for this campaign. In con-
trast, the near-complete failure of EGFRvVIII design
(0.3%) highlights the intrinsic difficulty of neoepi-
topes formed by deletion junctions, where the diffu-
sion model has limited structural precedent to draw
upon.

4.2 CDR RMSD as the Dominant De-
sign Bottleneck

Our analysis identifies target-aligned CDR RMSD—
not pAE—as the primary determinant of design
success. Median CDR RMSDs of 8 21 A across
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Top Candidate per Target (ranked by composite score)

Target Best Design pAE CDR RMSD iPAE pLDDT H3 RMSD Score
B7-H3 samples_design_23_dldesig 2.20 1.10 2.90 0.92 1.02 0.000
CD47 samples_design_20_dldesig 2.84 1.05 3.95 0.91 0.90 0.050
CEACAM5 samples_design_76_dldesig 2.59 0.68 3.56 0.91 0.70 0.015
EGFR samples_design_19_dldesig 3.32 1.31 5.14 0.90 1.49 0.129
EGFRuIIl samples_design_19_dldesig 8.24 1.82 15.14 0.89 0.66 0.000
EphA2 samples_design_27_dldesig 2.52 1.53 3.22 0.91 1.22 0.000
GPC2 samples_design_5_dldesign 8.28 1.99 15.05 0.89 0.53 0.429
HER2-DIV samples_design_16_dldesig 2.36 1.67 3.06 0.92 0.66 0.000
MSLN-C samples_design_71_dldesig 2.92 0.78 5.99 0.90 0.60 0.000
MSLN-N samples_design_32_dldesig 2.19 1.33 2.60 0.91 0.68 0.000

Figure 9: Best-scoring candidate per target, ranked by composite score. Columns show predicted aligned error
(pAE), target-aligned CDR RMSD, interaction pAE (iPAE), global fold confidence (pLDDT), CDR-H3 loop
accuracy (H3 RMSD), and composite score. The strongest candidates (CEACAMS5, B7-H3, MSLN-N) achieve

pAE below 3.0 and CDR RMSD below 1.5 A.

campaigns indicate that the majority of designs pro-
duce CDR loops that are structurally reasonable in
isolation (framework-aligned H3 RMSD medians of
1.0-1.6 A) but incorrectly positioned relative to the
target antigen. This suggests that the RFdiffusion
backbone generation step, which determines CDR
placement relative to the target, is the rate-limiting
step in the pipeline. Improvements to the diffusion
model’s epitope conditioning or the introduction of
iterative refinement of CDR-target docking could
substantially improve pass rates.

4.3 The Structural Data Bottleneck

Our analysis reveals that structural data availabil-
ity, not biological understanding, is the primary
bottleneck limiting computational antibody design
for cancer targets. Several targets with compelling
clinical evidence—CLDN18.2 (FDA Fast Track for
PDAC), IL-13Ra2 (dramatic complete responses in
GBM CAR-T trials), ErbB3/HER3 (functionally
validated kinase-dead RTK in MPNST)—cannot
currently be subjected to structure-guided de novo
design because no antibody—antigen complex struc-
tures exist in the public domain. The recent deposi-
tion of 9LME (B7-H3 nanobody complex, January
2025) illustrates how a single structural determina-
tion can unlock computational design for a target
relevant to four cancer indications simultaneously.

4.4 VHH Nanobodies as a Privileged
Format

The consistent selection of VHH format across all 10
campaigns reflects a deliberate therapeutic strategy.
For CNS tumors (DIPG, GBM), the ~10-fold size
reduction from IgG (~150kDa) to VHH (~15kDa)
may improve blood-brain barrier penetration [7].
For pancreatic cancer, smaller formats offer superior
stromal penetration. The uniformly high pLDDT
values (0.87-0.92) across all campaigns confirm that
the NbBCIT10 VHH framework is robustly modeled
by the RFAntibody pipeline, validating VHH as a
reliable computational design format.

4.5 Implications for Campaign Design
Strategy

Our results suggest several practical recommen-
dations for future computational antibody design
campaigns. First, backbone count should be pri-
oritized over sequences per backbone, given the
observed concentration of hits on a small fraction
of backbones. Second, CDR H3 loop length ranges
should be generous, as the CEACAMS5 campaign’s
extended range (10-18 residues) likely contributed
to its success. Third, targets with large epitope foot-
prints (e.g., EGFR cetuximab epitope, 30 residues)
may be better suited to Fab or scFv formats rather
than single-domain VHH. Fourth, campaigns pro-
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ducing zero or borderline passing designs should be
re-run with 10-100x more backbones before con-
cluding that a target is computationally intractable.

4.6 Cross-Indication Efficiency

The identification of cross-indication driver targets
creates efficiency in the design-to-clinic pipeline. A
single high-affinity VHH nanobody against B7-H3
could serve as a therapeutic or diagnostic agent
across MPNST, DIPG, neuroblastoma, and GBM—
four indications that collectively affect approxi-
mately 15,000 patients annually. The 11 B7-H3
candidates from this study represent a starting
point for this multi-indication strategy. Similarly,
the 12 combined mesothelin candidates targeting
two non-overlapping epitopes enable bispecific VHH
construction for enhanced PDAC therapy.

4.7 Model Bias Versus Intrinsic Target
Difficulty

A natural question arising from the 60-fold vari-
ation in pass rates is whether the observed dif-
ferences reflect genuine biophysical design diffi-
culty or systematic model bias in the RFdiffusion—
ProteinMPNN-RF2 pipeline. Several lines of evi-
dence favor the design-difficulty interpretation over
model bias. First, the pipeline’s global fold quality
metric (pLDDT) was remarkably uniform across
all 10 targets (medians 0.88-0.91), indicating that
the model treats the VHH framework consistently
regardless of target identity. Second, the varia-
tion is not explained by template resolution: CEA-
CAM5 (19.8% pass rate) used a 3.1 A template
while EGFRVIII (0.3%) used a 2.9 A template—the
lower-resolution structure outperformed. Third, the
targets that performed best (CEACAMS5, CD47,
B7-H3) share a common structural feature: rela-
tively concave epitope surfaces that provide com-
plementary pockets for single-domain antibody en-
gagement, whereas the worst-performing targets
(EGFRvIII, HER2 Domain IV) present convex or ge-
ometrically novel surfaces. Fourth, the framework-
aligned H3 RMSD was consistently low across all
campaigns (medians 1.0-1.6 A), confirming that the
CDR loops themselves are well-designed in isola-
tion; the failure mode is incorrect CDR positioning
relative to the target, which is governed by the geo-
metric compatibility between epitope shape and the

diffusion model’s backbone sampling distribution.
Nonetheless, model bias cannot be entirely excluded.
RFdiffusion was trained predominantly on existing
antibody—antigen complexes, which are enriched
for certain epitope geometries (e.g., flat or concave
surfaces) and may underrepresent neoepitopes or
membrane-proximal domains. Disentangling model
bias from intrinsic difficulty will require benchmark-
ing across a larger and more diverse target set,
ideally with experimental binding data as ground
truth.

4.8 Limitations

Several important limitations should be acknowl-
edged. First, the backbone counts per campaign
(53-118) are substantially lower than the 10,000
used in the original RFAntibody benchmarks; this
was a deliberate trade-off for rapid iteration, with
scale-up runs planned for the most promising tar-
gets. Second, computational metrics from RF2 are
predictive but not definitive—experimental valida-
tion remains essential. Third, our filters (pAE <
10, RMSD < 2.0) may be too stringent for some
targets; relaxed thresholds could identify additional
candidates worth testing. Fourth, the absence of
AAG scoring from the RF2 pipeline means that
binding energy is not directly assessed, and the
composite score relies solely on structural confi-
dence metrics. Fifth, epitope residues are derived
from reference complexes and represent one bind-
ing mode; designed VHH nanobodies may adopt
different effective epitopes.

5 Conclusion

We present the first systematic computational anti-
body design study targeting ten challenging cancer
antigens across five lethal indications. Through
analysis of 43 target—indication pairs, we developed
a structural readiness classification and identified
10 actionable targets. Execution of all 10 cam-
paigns using the RFAntibody pipeline generated
4,085 designs, of which 135 (3.3%) passed strin-
gent quality filters. Per-target pass rates varied
60-fold (0.3-19.8%), revealing that computational
design difficulty is strongly target-dependent and
that CDR RMSD is the dominant bottleneck. The
highest-confidence candidates—CEACAMS5 (pAE
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= 2.59, RMSD = 0.68 A), MSLN-Nterm (pAE =
2.19, RMSD = 1.33A), and B7-H3 (pAE = 2.20,
RMSD = 1.10 A)—represent immediate priorities
for experimental validation. All code, configura-
tions, analysis, and designed sequences are openly
available as resources for the computational biology
and cancer immunotherapy communities.

Data and Code Availability

The  rfab-harness campaign  orchestration
tool, all 10 cancer driver campaign configu-
rations, analysis scripts, and complete results
including all score CSVs are available at:
https://github.com/inventcures/repro_

rfantibody_for-cancer-targets. The tool
requires the RFAntibody repository [1] for pipeline

execution.
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